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BAYESIAN ESTIMATION   

We now describe another approach to estimation that is used by a group of  

Statisticians who call themselves Bayesians .To understand their approach  

Fully would require more text than we can allocate to this topic, but let us  

Begin this brief introduction by considering a simple application of the 

theorem of the Reverend Thomas Bayes. 

Example: 

Suppose we know that we are going to select an observation from a Poisson 

distribution with mean 𝝀 equal to 2 or 4. Moreover, prior to performing the  

experiment, we believe that      has about four times as much chance of 

being the parameter as does      ; that is the prior probabilities are  

 (   )        and  (   )     . 

Solution:  

The experiment is now performed and we observe that     . At this point, 

our intuition tells us that     seems less likely than before, as the 

observation      is much more probable with     than with     , 

because, in an obvious notation,  

 (      )                   ⁄  

and  

 (      )                    ⁄  

from Table .Our intuition can be supported by computing the conditional 

probability of    , given that     : 

 (      )⁄  
 (       )

 (   )
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 (   ) (      )⁄

 (   ) (      )⁄   (   ) (      )⁄
 

 
(   )(     )

(   )(     )  (   )(     )
        

This conditional probability is called the posterior probability of     , 

given the single data point (here,   ).In a similar fashion, the posterior 

probability of     is found to be 0.684 thus, we see that the probability of 

    has decreased from 0.8 (the prior probability) to 0.316 (the posterior 

probability) with the observation of    . 

Example: 

Suppose that Y has a binomial distribution with parameters n and    . 

Then the pmf of Y, given 𝜽, is  

 (  )  (
 

 
)⁄   (   )                           

Solution:  

Let us take the prior pdf of the parameter to be the beta pdf:- 

 ( )  
 (   )

 ( ) ( )
    (   )                   

Such a prior pdf provides a Bayesian a great deal of flexibility through the  

selection of the parameters α and β. Thus, the joint probabilities can be 

described by a product of a binomial pmf with parameters n and 𝜽 and this 

beta pdf, namely,  

 (   )  (
 

 
)
 (   )

 ( ) ( )
      (   )         

On the support given by              and      . We find  
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  ( )  ∫  (   )  
 

 

 

 (
 

 
)
 (   )

 ( ) ( )
 
 (   ) (     )

 (     )
 

On the support             by comparing the integral with one involving 

a bete pdf with parameters     and      . Therefore, 

 (  ⁄ )  
 (   )

  ( )
 

 
 (     )

 (   ) (     )
      (   )               

Which is a beta pdf with parameters     and      . With the squared 

error loss function we must minimize, with respect to w(y), the integral  

∫ [   ( )] 
 

 

 (  )⁄     

to obtain the Bayes estimator. But, as noted earlier, if Z is a random 

variable with  

A second moment, then  [(   ) ] is minimized by     ( ) . In the 

preceding integration, 𝜽 is like the Z with pdf   (  ⁄ ) , and w(y) is like the 

b, so the minimization is accomplished by taking  

 ( )   (  ⁄ )  
   

     
 

Which is the mean of the beta distribution with parameters     and 

     . 

It is instructive to note that this Bayes estimator can be written as  

 ( )  (
 

     
) (
 

 
)  (

   

     
)(

 

   
)  
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Which is a weighted average of the maximum likelihood estimate   ⁄  of 𝜽 

and the mean  (   )⁄  of the prior pdf of the parameter. Moreover, the 

respective weights are  (     )⁄  and (   ) (     )⁄ .Thus, we see 

that α and β should be selected so that not only is  (   )⁄  the desired prior 

mean, but also the sum (   ) plays a role corresponding to a sample size. 

That is, if we want our prior opinion to have as much weight as a sample size 

of 20, we would take        . So if our prior mean is   ⁄ , we select α    

and β    That is  the prior pdf of 𝜽 is beta (15, 5).If we observe n=40 and 

y=28, then the posterior pdf is beta (28+15=43, 12+5=17).  

Example: 

Let us consider again Example2, but now say that           is a random 

sample from the Bernoulli distribution with pmf  

 (  ⁄ )    (   )               

With the same prior pdf of 𝜽, the joint distribution of           and 𝜽 

given by  

 (   )

 ( ) ( )
    (   )    ∑   

 
   (   )  ∑   

 
                  

Of course, the posterior pdf of 𝜽, given that                    , 

Is such that  

 (           ⁄ )   ∑   
 
       (   )  ∑   

 
                

Which is beta with α  ∑   
 
    α    β  n  ∑   

 
    β ,the conditional 

mean of 𝜽 is  

∑   
 
     

     
 (

 

     
)(
∑   
 
   

 
)  (

   

     
)(

 

   
)  

Which, with  ∑   , is exactly the same result as that of Example 2. 
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MORE BAYESIAN CONCEPTS  

Let           be a random sample from a distribution with pdf (pmf) 

 (  ⁄ ), and let h (𝜽) be the prior pdf. Then the distribution associated with 

the marginal pdf of           namely, 

  (          )  ∫  (   ⁄ ) (   ⁄ )  (   ⁄ ) ( )  
 

  

  

Is called the predictive distribution because it provides the best description 

of the Probabilities on          . Often this creates some interesting 

distributions. For example, suppose there is only one X with the normal pdf  

 (  ⁄ )  
√ 

√  
  (  

 )  ⁄              . 

Here,      ⁄ , the inverse of the variance, is called the precision of X. Say 

this precision has the gamma pdf  

 ( )  
 

 ( )   
        ⁄        . 

Then the predictive pdf is  

  ( )  ∫
   

 
 
   

 (
  

 
 
 
 
) 

 ( )   √  
  

 

 

 

 
 (    ⁄ )

 ( )   √  

 

(  ⁄     ⁄ )    ⁄
           

Note that if     ⁄  and     ⁄  , where r is a positive integer, then  

  ( )  
 

(     ⁄ )(   )  ⁄
            

Which is a t pdf with r degrees of freedom. So if the inverse of the variance-

or precision 𝜽-of a normal distribution varies as a gamma random variable , 

a generalization of a t distribution has been created that has heavier tails 

than the normal distribution. This mixture of normal (different from a 
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mixed distribution) is attained by weighing with the gamma distribution in 

a process often called compounding. 

Another illustration of compounding is given in the next example. 

Example: 

Suppose X has a gamma distribution with the two parameters k and    . 

(That is, the usual α is replaced by k and 𝜽 by its reciprocal). Say h(𝜽) is 

gamma with parameters α and β, so that  

  ( )  ∫
          

 ( )

 

 

 

 ( )   
        ⁄    

 

 ∫
             (    )⁄

 ( ) ( )   

 

 

   

 
 (   )    

 ( ) ( )  
 

(    ⁄ )   
 

 
 (   )      

 ( ) ( )(    )   
        . 

Of course, this is a generalization of the F distribution, which we obtain by 

letting  

     ⁄       ⁄               ⁄  

Example: 

 (Berry, 1996) This example deals with predictive probabilities, and it 

concerns the breakage of glass panels in high-rise buildings. One such case 

involved 39 panels, and of the 39 panels that broke, it was known that 3 

broke due to nickel sulfide (NiS) stones found in them. Loss of evidence 

prevented the causes of breakage of the other 36 panels from being known. 

So the court wanted to know whether the manufacturer of the panels or the 

builder was at fault for the breakage of these 36 panels. 
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From expert testimony, it was thought that usually about 5% breakage is 

caused By NiS stones. That is, if this value of p is selected from a beta 

distribution, we have  

 

   
      

Moreover, the expert thought that if two panels from the same lot break 

and one breakage was caused by NiS stones, then, due to the pervasive 

nature of the manufacturing process, the probability of the second panel 

breaking due to NiS stones increases to about 95%. Thus, the posterior 

estimate of p (see Example 2) with one “success” after one trial is  

   

     
      

Solving Equations 3 and 4 for α and β, we obtain  

  
 

   
  and   

  

   
 

Now updating the posterior probability with 3 “success” out of 3 trials, we 

obtain the posterior estimate of p: 

   

     
 
    ⁄   

     ⁄   
 

 
    

    
        

Of course, the court that heard the case wanted to know the expert's 

opinion about the probability that all of the remaining 36 panels broke 

because of NiS stones. Using updated probabilities after the third break, 

then the fourth, and so on, we obtain the product  

(
    ⁄   

     ⁄   
) (

    ⁄   

     ⁄   
) (

    ⁄   

     ⁄   
) (

    ⁄    

     ⁄    
)           

That is, the expert held that the probability that all 36 breakages were 

caused by NiS stones was about 87%, which is the needed value in the 

court's decision. 
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Confidence Interval for Means μ 

 

Given a random sample              from normal distribution          , 

we shall now consider the closeness of   , the unbiased estimator of μ , to 

the unknown mean μ . to do this , we use the error structure ( distribution ) 

of     , namely , that     is     
  

 
   to construct what is called a confidence 

interval for the unknown parameter μ when the variance    is known . For 

the probability      we can find  a number     ⁄   from table   in 

Appendix   such that  

                          (     ⁄  
   
 

√ ⁄
     ⁄ )            

For example , if          , then     ⁄               .Now recalling 

that     , we see that the following inequalities are equivalent : 

                                                    ⁄  
   
 

√ ⁄
     ⁄  

                                      ⁄  
 

√ 
          ⁄  

 

√ 
  

       ⁄ (
 

√ 
)            ⁄  

 

√ 
  

      ⁄ (
 

√ 
)            ⁄  

 

√ 
  

Thus , since the probability of the first of these is     , the probability of 

the last must also be     , because the latter is true if an only if the former 

is true . that is , we have  

                   (      ⁄ (
 

√ 
)          ⁄  

 

√ 
 )            

So the probability that the random interval  

                             *       ⁄ (
 

√ 
)        ⁄ (

 

√ 
) + 



Includes the unknown mean μ is      

  Once the sample is observed and the sample mean computed to equal   , 

the interval [       ⁄ (
 

√ 
)        ⁄ (

 

√ 
) ] becomes known . since the 

probability that the random interval covers μ before the sample is drawn is 

equal to     , we now call the computed interval ,       ⁄ (
 

√ 
) ( for 

brevity ) , a            confidence interval for the unknown mean   . 

Foe example       (
 

√ 
) is a 95% confidence interval for   . The 

number           , or equivalently ,      is called the confidence 

coefficient. 

Example :  let X equal the length of life of a 60-watt light bulb marketed by 

a certain manufacturer. Assume that the distribution of X is           . if a 

random sample of      bulbs is tested until they burn out , yielding a 

sample mean of        hours , then a 95% confidence interval for μ is 

[          (
 

√ 
)           (

 

√ 
) ] 

                              *          (
  

√  
)           (

  

√  
) + 

                         [                        ]   

                         [                  ]   

The next example will help to give a better intuitive feeling for the 

interpretation of a confidence interval .  

Example: Let   be the observed sample mean of five observations of a 

random sample from the normal distribution         . A 90% confidence 

interval for the unknown mean μ is 

 

*        √
  

 
         √

  

 
 + 



 

Example :  Let               be a random sample of size 32 from a 

normal distribution         If          and           , then what is 

the 95 % confidence interval for the 

population mean µ ? 

Solution : since           ,     ⁄        for 95% confidence interval  

(   ⁄          

Hence , the confidence interval for   at 95% confidence level is  

 

          √
     

  
             √

     

  
 

Thus 95%  confidence interval :  17.94          

If the random sample arises from a normal distribution , we use the fact 

that  

                                          
   

 
√ 

⁄
 

has a t- distribution with        degrees of freedom , where    is the 

usual unbiased estimator of   .  Select    
 ⁄        so that  *  

  
 ⁄       +   

 ⁄  

       *   
 ⁄         

   

 
√ 

⁄
    

 ⁄       + 

                *   
 ⁄       

 

√ 
         

 ⁄       
 

√ 
+ 

               *     
 ⁄       

 

√ 
           

 ⁄       
 

√ 
+ 



  [    
 ⁄       

 

√ 
         

 ⁄       

 

√ 
] 

Thus , the observations of a random sample provide   and   , and  

[    
 ⁄       

 

√ 
      

 ⁄       

 

√ 
] 

is a             confidence interval for   

Example :  Let X equal the amount of butterfat in pounds produced by a 

typical cow during a 305-day milk production period between her first and 

second calves . Assume that the distribution of X is         . To estimate   

, a farmer measured the butterfat production for      cows and obtained 

the following data  

   481   537   513   583   453   510   570  500   457   555 

  618   327   350   643   499   421   505   637   599   392  

For these data ,          and         . Thus , a point estimate of   is 

         ,  since                 . a 90% confidence interval for   is  

              
     

√  
   or                 

Or equivalently      [              ] 

If we are not able to assume that the underlining distribution is normal , but 

  and   are both unknown , approximate confidence interval for   can still 

be constructed with  the formula                          

                                                
   

 
√ 

⁄
 

Which now only has an approximate t- distribution . Generally , this 

approximation is quite good (i.e., it is robust ) for many not normal 

distribution ; in particular , it works will if the underlining distribution is 

symmetric ,  unimodal  , and of the continuous  type . However , if the 

distribution is highly skewed , there is great danger in using that 



approximation . in such a situation , it would be safer to use certain 

nonparametric methods for finding a  confidence interval for the median 

of the distribution , one of which is given in this lecture. There is one other 

aspect of confidence interval that should be mentioned . so far , we have 

created only that are called two- sided confidence interval for the mean   . 

sometimes , however , we might want only a lower ( or upper ) bound on  . 

We proceed as follows . 

Say   is the mean of a random sample of size   from the normal distribution 

        , where , for the moment , assume that    is known .Then  

 (
   
 

√ ⁄
   )      

or equivalently   

   

 (    (
 

√ 
)   )      

 

Once   is observed to be equal to   , it follows that  [     ( √ ⁄ )       

is a            one-sided confidence interval for   . That is , with the 

confidence coefficient     ,     ( √ ⁄ ) , is lower bound for   . 

similarly ,          ( √ ⁄ ) ] is a one-sided confidence interval for   

and     ( √ ⁄ ) provides an upper bound for   with the confidence 

coefficient     . When   is unknown , we will use    
     

   
√ 

⁄  ⁄   

to find the corresponding lower or upper bounds for   , namely  

 

            √ ⁄       and               √ ⁄        



CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO 

MEANS        

Suppose that we are interested in comparing the means of two normal 

distributions. Let             and             be, respectively, two 

independent random samples of sizes   and   from the two normal 

distributions        
    and        

      . Suppose, for now, that    and 

   are known. The random samples are independent; thus, the respective 

sample means   and   are also independent and have distributions  

       
     and        

  . Consequently, the distribution of          

is           
  

 

 
   

  
 

 
    and 

                                (     ⁄  
(   ) (     )

√  
 

 
   

  
 

 

     ⁄ )            

which can be rewritten as 

 

   [(   )      ⁄          (   )      ⁄   ]            

where    √  
 

 
   

  
 

 
  is the standard deviation of       . Once the 

experiments have been performed and the means   and   computed , the 

interval  

[        ⁄              ⁄    ] 

 or, equivalently, (   )      ⁄     provides a           confidence 

interval for         Note that this interval is centered at the point 

estimate       of        and is completed by subtracting and adding the 

product of   
 ⁄
 and the standard deviation of the point estimator. 



Example :  In the preceding discussion, let        ,            , 

       ,   
     ,    

      and           Thus ,    
 ⁄  

               Hence ,  

                √
  

  
 

  

 
       

and, since           , it follows that 

[                         ]  [              ] 

is a 90% confidence interval for         . Because the confidence 

interval does not include zero, we suspect that    is greater than    . 

 

If the sample sizes are large and    and    are unknown, we can replace   
  

and   
  with   

 and   
  , where   

 and   
  are the values of the respective 

unbiased estimates of the variances. This means that  

                                       
 ⁄
√  

 

 
   

  
 

 
 

serves as an approximate           confidence interval for       . 

Now consider the problem of constructing confidence intervals for the 

difference of the means of two normal distributions when the variances are 

unknown but the sample sizes are small. Let            and  

           be two independent random samples from the distributions  

        
   and   (      

 ), respectively. If the sample sizes are not large 

(say, considerably smaller than 30), this problem can be a difficult one. 

However, even in these cases, if we can assume common, but unknown, 

variances (say,   
    

    ) , there is a way out of our difficulty. 

We know that 



  
(   )  (     )

√
  

 ⁄    
 ⁄

 

is       . Moreover, since the random samples are independent, 

     
       

 

  
   

       
 

  
  

is the sum of two independent chi-square random variables; thus, the 

distribution of   is          In addition, the independence of the sample 

means and sample variances implies that   and   are independent. 

According to the definition of a   random variable, 

  
 

√
 

       ⁄

 

has a distribution with         degrees of freedom. That is,  

   

(   ) (     )

√  
 

 
   

  
 

 

√
  
  
  
  
 
*
       

 

     
       

 

  + 

         
⁄

 

  
(   ) (     )

√*
       

         
 

     
+*

 

 
 

 

 
+

   

degrees of freedom. Thus, with 

has a t distribution with to           degrees of freedom. Thus, with  

     
 ⁄
        , we have 

                                             



solving the inequalities for       , yields 

 (        √
 

 
 

 

 
               √

 

 
 

 

 
) 

where the pooled estimator of the common standard deviation is 

   √
       

         
 

     
 

If       and    are the observed values of     . and    , then 

           *        √
 

 
 

 

 
           √

 

 
 

 

 
+ 

is a            confidence interval for       . 

Example :  Suppose that scores on a standardized test in mathematics taken 

by students from large and small high schools are         
   and 

 (      
 ), respectively, where     is unknown. If a random sample of 

      students from large high schools yielded         ,   
        , 

and a random sample of        students from small high schools yielded 

        ,   
       , then the endpoints for a 95% confidence interval 

for       are given by  

                    √
                  

  
 √

 

 
 

 

  
 

because                    . The 95% confidence interval is 

[           ]  

REMARKS The assumption of equal variances, namely,   
    

 . can be 

modified somewhat so that we are still able to find a confidence interval for 

      . That is,  if we know the ratio   
    

  of the variances, we can 

still make this type of statistical inference by using a random variable with a 



t distribution. However, if we do not know the ratio of the variances and yet 

suspect that the unknown    
  and   

  differ by a great deal, what do we 

do? It is safest to return to  

                                              
(   ) (     )

√  
 

 
 

  
 

 

 

for the inference about        but  replacing   
  and   

  by their 

respective estimators    
  and   

 . That is, consider 

                                
(   ) (     )

√  
 

 
 

  
 

 

  

What is the distribution of  ? As before, we note that if   and   are large 

enough and the underlying distributions are close to normal (or at least not 

badly skewed), then   has an approximate normal distribution and a 

confidence interval for       can be found by considering  

 (   
 ⁄
     

 ⁄
)      

However, for smaller   and  , Welch has proposed a Student's t distribution 

as the approximating one for  . Welch's proposal was later modified by 

Aspin. (See A. A. Aspin, "Tables for Use in Comparisons Whose Accuracy 

Involves Two Variances, Separately Estimated,"  Biometrika  , 36 (1949), 

pp. 290-296, with an appendix by B. L. Welch in which he makes the 

suggestion used here.] The approximating Student's t distribution has r 

degrees of freedom, where 

   
 

 
 

  

   
 

      

   
    and     

  
 

 

  
 

 
 

  
 

 

 

An equivalent formula for   is 



                       
(
  

 

 
 

  
 

 
)

 

 

   
(
  

 

 
)

 

 
 

   
(
  

 

 
)

  

In particular, the assignment of   by this rule provides protection in the case 

in which the smaller sample size is associated with the larger variance by 

greatly reducing the number of degrees of freedom  from the usual     

      . Of course, this reduction increases the value of    
 ⁄
 . If   is not an 

integer, then use the greatest integer in r ; that is, use [ ] as the number of 

degrees of freedom associated with the approximating Student's  

 -distribution. An approximate           confidence interval for 

      is given by 

                
 ⁄
   √

  
 

 
 

  
 

 
 

It is interesting to consider the two-sample   in more detail. It is 

   
(   ) (     )

√       
         

 

     
(
 

 
 

 

 
)

 

  
(   ) (     )

√*
       

 

  
 

       
 

  
+* 

   

     
 +

 

Now, since           ,            , and              

    , we have 

      
(   ) (     )

√  
 

 
 

  
 

 

 

We note that, in this form, each variance is divided by the wrong sample 

size! That is, if the sample sizes are large or the variances known, we would 

like 



           √
  

 

 
 

  
 

 
         or       √

  
 

 
 

  
 

 
 

in the denominator; so   seems to change the sample sizes. Thus, using this 

  is particularly bad when the sample sizes and the variances  are unequal; 

hence, caution must be taken in using that   to construct a confidence 

interval for       . That is, if      and   
    

 , then   does not 

have a t- distribution which is close to that of a Student t-distribution with 

          degrees of freedom: Instead, its spread is much  less than the 

Student t's as the term   
      in the denominator is much larger than it 

should be. By contrast, if      and   
    

   then    
        

     is 

generally  smaller than it should be and the distribution of T is spread out 

more than that of the  Student t. 

There is a way out of this difficulty, however: When the underlying 

distributions are close to normal, but the sample sizes and the variances are 

seemingly much different, we suggest the use of  

                              
(   ) (     )

√  
 

 
 

  
 

 

 

where Welch proved that W has an approximate   distribution with [ ]  

degrees of freedom, with the number of degrees of freedoms. 
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Interval Estimation 

Definition. Let             be a random sample of size n from a 

population X with density  (   ) where   is an unknown parameter. The 

interval estimator of   is called a    (   )  confidence interval for   if 

 (     )      

The random variable L is called the lower confidence limit and U is called 

the upper confidence limit. The number (   ) is called the confidence 

            or degree of confidence. 

Thus, if we want a 95%  confidence interval for, say , population mean μ , 

then α = 0.05. Note that for the discrete random variables , we may not be 

able to find a lower confidence limit L and an upper confidence limit U such 

that the probability 

 P (L ≤ θ ≤ U), is exactly (1 - α) .   

A Method of Finding the Confidence Interval 

1- confidence interval for the population mean μ  

we first study the simpler but unrealistic case where we are trying to 

estimate    

(a) : The Case of σ Known : The sampling distribution of     is centered at μ 

, Its variance is     ⁄   as we learned previously    ⁄    is the value for which  

                           (     ⁄        ⁄ )           

Where   
   
 
√ 
⁄

  . Hence  

                          (     ⁄  
   
 
√ 
⁄

     ⁄ )            



                   

we learned previasly that   
   
 
√ 
⁄

  has  stansard normal distribution for  

                     

                     (      ⁄  
 
√ 
⁄          ⁄  

 
√ 
⁄ )           

multiply by   
√ 
⁄   , subtract    , multiply by -1 to get this . Now we select a 

particuler sample of size   and get a spafic value of    then. 

Confidence Interval on μ ; σ  Known 

If     is the mean of a random sample of size n from a population with 

known variance σ2 , a 100(1 - α)% confidence interval for μ is given by    

                           ⁄  
 
√ 
⁄          ⁄  

 
√ 
⁄  

 where     ⁄   is the z-value from the stansard normal distribution leaving an 

area of   ⁄  to the right . 

 

note 1 :          ⁄  
 
√ 
⁄    ,         ⁄  

 
√ 
⁄  

note 2 : The larger     , the tighter the confidence interval 

note 3 : The smaller    , the wider the confidence interval 

Example : A sample of 64 resistors from a population line are found to bake 

a mean resistance of 206 ohms. Find the 95% and 99% confidence intervals 

for the mean resistance of the population . Assume that the population 

standard deviation is 4 ohms . 



Solution: The point estimate of μ is  =206. 

(a): 95%  :            ,   ⁄          

              (from normal table ) 

Hence , the confidence interval for   at 95% confidence level is  

        
 

√  
           

 

√  
 

Thus 95% confidence interval :  205.02           

(b) : 99% :           ,   ⁄          

               (from normal table ) 

Hence , the confidence interval for   at 99% confidence level is  

         
 

√  
            

 

√  
 

Thus 99% confidence interval :  204.71           

Theorem 1 : If     is used as an estimate of μ , we can be  

100(1 - α)% confident that the error will not exceed     ⁄  
 
√ 
⁄  

            
Theorem 2 : If     is used as an estimate of μ, we can be 

 100(1 - α)% confident that the error will not exceed a specified amount e 

when the sample size is    

                                               (
    ⁄  

 
√ 
⁄

 
)

 

   rounded up 



Example 2: How large a sample size is required if in an previous example 

we want to be 95% confident that our estimate 

of μ (mean resistance of population ) is off by less than 0.01? 

Solution: The population standard deviation is σ = 4 

    ⁄        for 95% confidence interval  (  ⁄        ) 

So ,   (
      

    
)
 
           , round up         .  

 (b ):  The Case of σ Unknown : Usually  when we are trying to estimate   , 

when    is unknown   

LARGE SAMPLE CONFIDENCE INTERVAL FOR    

for a large sample of size n , let    be the sample mean. Then the 

large sample (1 - α)100%  confidence interval for the population mean μ is    

                              ⁄  
 
√ 
⁄        ⁄  

 
√ 
⁄  

where S is a point estimate of σ. That is  

                     (      ⁄  
 
√ 
⁄          ⁄  

 
√ 
⁄ )          

Example 3 :  Let               be a random sample of size 32 from a 

normal distribution  (    ). If          and           , then what is 

the 95 % confidence interval for the 

population mean µ ? 

Solution: since           ,     ⁄        for 95% confidence interval  

(   ⁄        ) 

Hence , the confidence interval for   at 95% confidence level is  

          √
     

  
             √

     

  
 

Thus 95%  confidence interval :  17.94          . 



SMALL SAMPLE CONFIDENCE INTERVALS FOR μ  

Let              be a random sample from a normal distribution, then the 

random variable     
   

 
√ 
⁄

   has a Student t-distribution with n - 1 degrees of 

freedom.   (population standard deviation)is unknown ,but is replaced with 

S ( sample standard deviation ) ,Similar to before      (     ⁄  
   

 
√ 
⁄

 

    ⁄ )      , multiply by   
√ 
⁄   , subtract    , multiply by -1 to get  

                        (      ⁄
 
√ 
⁄          ⁄

 
√ 
⁄ )            

                   

With     ⁄  being the t-value ( from  t-table ) for         degrees of 

freedom above which we can find an area of    ⁄  . The difference from 

before is the use of t-distribution table rather than the standard normal 

distribution . 

Confidence Interval on μ ,    Unknown  :  If     and S are the mean and 

standard deviation of a random sample from a normal population with 

unknown variance   , a 100(1-α)% confidence interval  for μ is     

                                      ⁄
 
√ 
⁄          ⁄

 
√ 
⁄   

where     ⁄   is the t-value with        degrees of freedom, leaving an 

area of    ⁄  to the right. 
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Some Examples and Definitions 

The two principal areas of statistical inference are the areas of estimation of 

parameters and of tests of statistical hypotheses. The problem of estimation of 

parameters, both point and interval estimation, has been treated. In this chapter 

some aspects of statistical hypotheses and tests of statistical hypotheses will be 

considered. The subject will be introduced by way of example. 

Example 1. Let it be known that the outcome X of a random experiment 

is           For instance, X may denote a score on a test, which score we 

assume to be normally distributed with mean Band variance 100. Let us say 

that past experience with this random experiment indicates that      . 

Suppose, owing possibly to some research in the area pertaining to this 

experiment, some changes are made in the method of performing this random 

experiment. It is then suspected that no longer does        but that now   
   . There is as yet no formal experimental evidence that      ; hence the 

statement        is a conjecture or a statistical hypothesis. In admitting that the 

statistical hypothesis        may be false, we allow, in effect, the possibility 

that       . Thus there are actually two statistical hypotheses. First, that the 

unknown parameter       ; that is, there has been no increase in . Second, that 

the unknown parameter      . Accordingly, the parameter space is  
                 . We denote the first of these hypotheses by the symbols 

H0: θ:s; 75 and the second by the symbols  :      . Since the values    
    are alternatives to those where       , the hypothesis H1:        is called 

the alternative hypothesis. Needless to say, Ho could be called the alternative H1; 

however, the conjecture, here      , that is made by the research worker is 

usually taken to be the alternative hypothesis. In any case the problem is to decide 

which of these hypotheses is to be 

accepted. To reach a decision, the random experiment is to be repeated a number 

of independent times, say n, and the results observed. That IS, we consider a 

random sample                from a distribution that is n       , and we 

devise a rule that will tell us what decision t? make once the experimental values, 

say            , have been determined. Such a rule is called a test of the 

hypothesis           against the alternative hypothesis           . There is 

no bound on the number of rules or tests that can be constructed. We shall 

consider three such tests. Our tests will be constructed around the following 

notion. We shall partition the sample space d into a subset e and its complement 

    If the experimental values of                             , are such that 

the point                 , we shall reject the hypothesis    (accept the 



 

 
 

hypothesis  )' If we have                 , we shall accept the hypothesis 

   (reject the hypothesis   ) 

Test 1. Let      . The sample space d is the set                      -     i   

   i                    Let the subset C of the sample space be                     

x25); x1 + x2 + ... + x25 > (25)(75)}. We shall reject the hypothesis H0 if and 

only if our 25 experimental values are such that                 

                     is not an element of C, we shall accept the hypothesis H0. 

This subset C of the sample space that leads to the rejection of the hypothesis 

           is called the critical region of Test 1. Now ∑  i  
            if and only 

if  ̅    , where  ̅  ∑  i    ⁄  
    

Thus we can much more conveniently say that we shall reject the hypothesis 

 0       and accept the hypothesis  1         if and only if the 

experimentally determined value of the sample mean  ̅ is greater than  . 

If  ̅     , we accept the hypothesis 0        . Our test then amounts to this: 

We shall reject the hypothesis  0         if the mean of the sample exceeds the 

maximum value of the mean of the distribution when the hypothesis H0 is true. 

 It would help us to evaluate a test of a statistical hypothesis if we knew the 

probability of rejecting that hypothesis (and hence of accepting the alternative  

  [(             )   ]            

hypothesis). In our Test 1, this means that we want to compute the probability  

Obviously, this probability is a function of the parameter 8 and we shall denote it 

by       The function              ̅       is called the power 

Figure 1. 



 

 
 

function of Test 1, and the value of the power function at a parameter point is 

called the power of Test 1 at that point. Because  ̅ i          we have 

         (
   

 
 

    

 
 )      

    

 
  

       So, for illustration, we have, by Table III of Appendix B, the power at 

       to be              . Other powers are                       
      , and             . The graph of       of Test 1 is depicted in 

following Figure 1. Among other things, this means that, if    , the 

probability of rejecting the hypothesis         is 
 

 
 That is, if      so that 

H0 is true, the probability of rejecting this true hypothesis    i  
 

 
   Many 

statisticians and research workers find it very undesirable to have such a high 

probability as 
 

 
 assigned to this kind of mistake: namely the rejection of H0 when 

H0 is a true hypothesis. Thus Test 1 does not appear to be a very satisfactory test. 

Let us try to devise another test that does not have this objectionable feature. We 

shall do this by making it more difficult to reject the hypothesis H0 , with the hope 

that this will give a smaller probability of rejecting H0 when that hypothesis is 

true. 

Test 2. Let         We shall reject the hypothesis            and accept the 

hypothesis            if and only if  ̅      . Here the critical region is       

                                          . The power  

 

                   (
     

 
) 

function of Test 2 is, because X is        Some values of the power function of 

Test 2 are                                          , and        

      . That is, if      , the probability of rejecting            is     ; this 

is much more desirable than the corresponding probability 1- that resulted from 

Test 1. However, if H0 is false and, in fact,      , the probability of rejecting 

          (and hence of accepting           ) is only     . In certain 

instances, this low probability       of a correct decision (the acceptance of H1 

when H1 is true) is objectionable. That is, Test 2 is not wholly satisfactory. 

Perhaps we can overcome the undesirable features of Tests 1 and 2 if we proceed 

as in Test 3. 



 

 
 

Test 3. Let us first select a power function       that has the features of a small 

value at        and a large value at      . For instance, take         

       and              . To determine a test with such a power function, let 

us reject           if and only if the experimental value  ̅ of the mean of a 

random sample of size n is greater than some constant c. Thus the critical region 

is                                            . It should be noted that the 

sample size   and the  

                   (
    

  √ 
 )  

        i i                                        i        

   (
    

  √ ⁄
)                          

   

  √ ⁄
  

Equivalently , we have 

    

  √ ⁄
           

    

  √ ⁄
    

constant   have not been determined as yet. However, since  ̅ i           ), the 

power function is  

The solution to these two equations in   and   is        ,       . With these 

values of   and  , other powers of Test 3 are              and       

     . It is important to observe that although Test 3 has a more desirable power 

function than those of Tests 1 and 2, a certain "price" has been paid-a sample size 

of       is required in Test 3, whereas we had      in the earlier tests. 

Remark. Throughout the text we frequently say that we accept the hypothesis H0 

if we do not reject H0 in favor of H1. If this decision is made, it certainly does not 

mean that H0 is true or that we even believe that it is true. All it means is, based 

upon the data at hand, that we are not convinced that the hypothesis H0 is wrong. 

Accordingly, the statement "We accept H0 " would possibly be better read as "We 

do not reject Hi;" However, because it is in fairly common use, we use the 

statement "We accept H0," but read it with this remark in mind.  

We have now illustrated the following concepts: 

a) A statistical hypothesis. 



 

 
 

b) A test of a hypothesis against an alternative hypothesis and the 

associated concept of the critical region of the test. 

c) The power of a test.  

These concepts will now be formally defined. 

Definition :  A statistical hypothesis is an assertion about the distribution of 

one or more random variables . if the statistical hypothesis completely 

specifies the distribution , it is called a simple statistical hypothesis ; if it 

does not, it is called composite statistical hypothesis. If we refer to example 

1, we see that both         and      Are composite statistical 

hypothesis , since of them completely specifies  The distribution.   If there , 

instead of         we had          , Then H0  would have been a 

simple statistical hypothesis. 

 

Definition:. A test of a statistical hypothesis is a rule which, when the 

experimental sample values have been obtained, leads to a decision to accept 

or to reject the hypothesis under consideration. 

Definition:. Let   be that subset of the sample space which, in accordance 

with a prescribed test, leads to the rejection of the hypothesis under 

consideration. Then   is called the critical region of the test. 

Definition :. The power function of a test of a statistical hypothesis H0 

against an alternative hypothesis H1 is that function, defined for all 

distributions under consideration, which yields the probability that the 

sample point falls in the critical region   of the test, that is, a function that 

yields the probability of rejecting the hypothesis under consideration. The 

value of the power function at a parameter point is called the power of the 

test at that point. 

Definition:. Let H0 denote a hypothesis that is to be tested against an 

alternative hypothesis H1 in accordance with a prescribed test. The 

significance level of the test (or the size of the critical region  ) is the 

maximum value (actually supremum) of the power function of the test when 

H0 is true. 

Example:    i                           i                                



 

 
 

        
 

 
     ⁄                     

             

   i     i                 i             i       

      i                i    i             i      

         

                         i              i    

    i                                 i     i          i   

If we refer again to Example 1, we see that the significance levels of Tests 1, 

2, and 3 of that example are 0.500,0.067, and 0.159, respectively. An 

additional example may help clarify these definitions.  

the critical region to be                                    The power 

function of the test and the significance level of the test will be determined. 

There are but two probability density functions under consideration, 

namely,       specified by   and        specified by    . Thus the power 

function is defined at but two points     and    . The power function 

of the test is given by                  If H0 is true, that is,    , the joint 

p.d.f. of Xl and X2 is  

                    
 

 
             ⁄                                

            

                                 

   ∫ ∫
 

 

      

 

   

 

             ⁄          

             i         
      i             i              i                         i  

                    
 

  
             ⁄                       

            
and 

                ∫ ∫
 

  

      

 

   

 

             ⁄          

             i       



 

 
 

 

Thus the power of the test is given by 0.05 for     and by 0.31 for   

 . That is, the probability of rejecting   when   is true is 0.05, and the 

probability of rejecting   when   is false is 0.31. Since the significance 

level of this test (or the size of the critical region) is the power of the test 

when   is true, the significance level of this test is 0.05. The fact that the 

power of this test, when    , is only 0.31 immediately suggests that a 

search be made for another test which, with the same power when     , 

would have a power greater than 0.31 when     . However, Section 7.2 

will make clear that such a search would be fruitless. That is, there is no test 

with a significance level of 0.05 and based on a random sample of size 

    that has a greater power at    . The only manner in which the 

situation may be improved is to have recourse to a random sample of size   

greater than 2.  

Our computations of the powers of this test at the two points     and 

     were purposely done the hard way to focus attention on fundamental 

concepts. A procedure that is computationally simpler is the following. 

When the hypothesis H o is true, the random variable   i         Thus  

                                    

the random variable            , say, is        Accordingly, the power of 

the test when H 0 is true is given by   

from Table II of Appendix B. When the hypothesis H1 is true, the random 

variable     i         so the random variable            , say, is 

       Accordingly, the power of the test when H1 is true is given by  

                            

∫
 

 

 

    

      ⁄     

  i   i                       i       

Remark:. The rejection of the hypothesis   when that hypothesis is true is, 

of course, an incorrect decision or an error. This incorrect decision is often 

called a type I error; accordingly, the significance level of the test is the 

probability of committing an error of type 1. The acceptance of    when 



 

 
 

  is false (  is true) is called an error of type II. Thus the probability of a 

type II error is 1 minus the power of the test when   is true. Frequently, it is 

disconcerting to the student to discover that there are so many names for the 

same thing. However, since all of them are used in the statistical literature, 

we feel obligated to point out that" significance level," "size of the critical 

region," "power of the test when   is true," and" the probability of 

committing an error of type I" are all equivalent. 
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CONFIDENCE INTERVALFOR VARIANCE    

In this topic we have two cases  

 (a): The case of    is Unknown  

Let       
         

  
        chi-squared distribution with n - 1 degrees of 

freedom  where  the sample variance is given by    

      
 

   
∑ (    )

  
       

and      is a point estimator of   , then the confidence coefficient is 

                    (   
   

 ⁄
      

 
 ⁄
 )      

               (   
   

 ⁄
 

         

  
   

 
 ⁄
 )       

               (
         

   
 ⁄

    
         

   
   

 ⁄

)       

 THEOREM :  If     is the variance of a random sample of size   from a 

normal population , a             confidence interval for    is 

                         
         

   
 ⁄

    
         

   
   

 ⁄

 

 (b): The case of    is Known 

                  (
∑        

   
 

   
 ⁄

    
∑        

   
 

   
   

 ⁄

)        

ESTIMATING THE RATIO OF TWO VARIANCES  

The statistic  
  

 

  
    is called an estimator of  

  
 

  
 
  

THEOREM : If   
  and   

  are the variances of normal populations, we 

can establish an interval estimate of  
  

 

  
 
  by using the statistic the random 



 
3 

 

variable   has an F-distribution with            and             

degrees of freedom. 

                                               
  

   
 

  
   

  

 (    
 ⁄
            

 ⁄
       )      

where     
 ⁄
        and   

 ⁄
        are the values of the F-distribution with 

   and    degrees of freedom, leaving areas of         and    , 

respectively 

 (    
 ⁄
        

  
   

 

  
   

    
 ⁄
       )      

Multiply by  
  

 

  
  

 ( 
  

 

  
 

 

  
 ⁄
       

 
  

 

  
 
 

  
 

  
 

 

    
 ⁄
       

)      

replace the quantity     
 ⁄
        by  

 

    
 ⁄
       

  Therefore   

 ( 
  

 

  
 

 

    
 ⁄
       

 
  

 

  
 
 

  
 

  
    

 ⁄
       )      

Confidence Interval for  
  

 

  
 
  . 

THEOREM: if   
  and   

  are the variances of independent samples of 

sizes   and   , respectively, from normal populations, then a        

     confidence interval for  
  

 

  
 
   is 

( 
  

 

  
 

 

    
 ⁄
       

 
  

 

  
 
 

  
 

  
    

 ⁄
       ) 
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where    
 ⁄
        is an f-value with           and            degrees 

of freedom, leaving an area of α/2 to the right, and    
 ⁄
        is a similar  -

value with            and             degrees of freedom. 

Example: An optical form purchases for making lenses. A Scum that the 

refractive index of 20 pieces of glass have variance of 1.20 × 10
-9

 construct a 

95%  C I for the population variance. 

 Solution :  

n= 20   , s
2
 = 10

-9
 × 1.2 

n-1 = 19 

1- α = 0.95  =< α = 0.05 

 

 
  = 0.05  =<   1-  

 
 = 0.475 

  
 
 
 
 = 32.585             n= 19 هي الجدول حيث      

  
   

 
 
 = 8.9066                  n= 19      ) هي الجدول حيث    

    
 

  ,       

  
   

 
 

 ) 

= (7.304  × 10
-5 

 , 2.694 × 10
-5 

  )  

Example: n = 12 taken from N ( μ , σ
 2
) ,  ̅= 10 , S

2
 = 9. Find : a 90 % C.I. 

for σ
 2
. 

Solution  

n = 12           ,    ̅= 10       ,         S
2
 = 9  

1 -  α = 0.9  =< α = 0.1 =<   
 
  = 0.05  

=< 1 -   
 
  = 0.025 

  
 
 
          = 19.675   ,     

     
 
 
         = 4.575  from the table of chi square then 

  )     

    
 

  ,       

  
   

 
 

 )= (5.48,   23.606) 

Example:  Construct a 95% C I for σ
 2
 with unknown mean using the 

following sample : 
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4.5  ,  10.2  ,  10.5  ,  9.8  ,  13.6  ,  19.2  , 15.5  , 13.3 , 10.8   ,  16.4 . 

Solution  

S
2
 =  

∑         ̅ 

   
    

1 -  α = 0.95   ,   n = 10   

=< n – 1 = 9  

 ̅ =  
∑    

 
        = 

     

  
 

 ̅ = 12.23  

S
2
 =  

      

 
     

S
2
 =  16.935 

 

 
      

  
  

 
      

λ
2
 
(ρ)

 (0.05) = 16.919 

λ
2
 
(ρ)

 (0.95) = 3.325 

)     

    
 

  ,       

  
   

 
 

  ) =  )             
      

  ,   
           

     
 )= (9.038   , 45.90) 

 هعلوم μاذا كاًث 

 )      

    
 

  ,       

  
   

 
 

  ) 

   nهلاحظة : ًأخر قيوة هي الجدول بـ  

(هسحوبة هي  52هثال : اذا علوث اى جبايي عيٌة عشوائية ذات حجن 
2 

σN(10 ,   9 =وكاى 
2

S  جد

 9لحبايي هرا الوجحوع 59.2بوعاهل ثقة 

 الحل //

1 -  α = 0.95  =< α = 0.05 =<   
 
  = 0.025  

  1 -   
 
  = 0.975 

λ
2
    
     

  = 13.1197  ,   λ
2
    
     

  = 40.6465 

Xi X -  ̅ (X -  ̅)
2
 

4.5 -7.73 59.75 

10.2 -2.03 4.12 

10.5 -1.73 2.99 

9.8 -20.43 5.9 

13 0.77 0.59 

19.2 6.97 48.5 

15.5 3.27 10.69 

13.3 1.02 1.04 

10.8 -1.43 2.04 

16.4 4.17 17.3 

123.2  152.92 
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 )      

    
 

  ,       

  
   

 
 

 ) = (5.5355  ,  17.1498) 

Example:  A r.v of size 21 
˷
 N (μ , σ

 2
) with S

2
 = 9. Determine 90%  C.I. for 

σ
 2
 

Solution  

n = 21    ,  S
2
 = 9    

1 -  α = 0.90  =< α = 0.1 =<   
 
  = 0.05  

1 -   
 
  = 0.95 

n = 21   =<  n-1 = 20 

λ
2
 
  
 

 

    =  31.410     ,   λ
2
 
  

    
  =  10.831 

)     

    
 

  ,       

  
   

 
 

  )=        

      
  ,   

      

      
 )= ( 6.017   , 17.4 ) 

( عندما تكون μ – 1 μ 2)تقدير 
2
σ مشتركة وغير معلومة 

 (( ̅1 -  ̅2) ±    
 

         
  SP √

 

  
  

 

  
 

 حيث :

SP = √
                          

         
  

Example: n1=32   ,  ̅1 = 72  , S1=8   , n2 = 32 ,   ̅2 = 72  , S2=6. Constrict  a  

99%  C. I. from the difference of mean (Assume S.D are equal) 

Solution: SP =√
                          

         
  =  √

                

  
  

1 -  α = 0.99  =< α = 0.01 ,     
 

         
=7.18  where  

 
  = 0.005 

= ](72-70) ± (2.660) (7.18) √
 

  
 [= ] 2 ± 19.0988 (0.156) [= ] 2 ± 0.298 [ 

= ] 1.702 , 2.298 [ 
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Sample size   

In statistical consulting, the first question frequently asked is, 

“How large should the  sample size be to estimate a mean?” In 

order to convince the inquirer that the answer will depend on the 

variation associated with the random variable under observation, 

the statistician could correctly respond, “Only one observation is 

needed, provided  that the standard deviation of the distribution is 

zero.” That is, if σ equals zero, then the value of that one 

observation would necessarily equal the unknown mean of the 

distribution. This, of course, is an extreme case and one that is not 

met in practice; however, it should help convince people that the 

smaller the variance, the smaller is the sample size needed to 

achieve a given degree of accuracy. This assertion will become 

clearer as we consider several examples. Let us begin with a 

problem that involves a statistical inference about the unknown 

mean of a distribution . 

Example : A mathematics department wishes to evaluate a new 

method of teaching calculus with a computer. At the end of the 

course, the evaluation will be made on the basis of scores of the 

participating students on a standard test. There is particular interest 

in estimating  , the mean score for students taking the course.  

Thus, there is a desire to determine the number of students,  , who 

are to be selected at random from a larger group of students to take 

the course. Since new computing equipment must be purchased, 

the department cannot afford to let all of the school’s students take 

calculus the new way.  



 

2 

 
 

In addition, some of the staff question the value of  this approach 

and hence do not want to expose every student to this new 

procedure. So, let us find the sample size n such that we are fairly 

confident that       contains the unknown test mean  . 

 From past experience, it is believed that the standard deviation 

associated with this type of test is about 15. (The mean is also 

known when students take the standard calculus course.) 

 Accordingly, using the fact that the sample mean of the test 

scores,  ̅, is approximately     
  

 
 , we see that the interval given 

by  ̅                 will serve as an approximate     

confidence interval for μ. That is, we want 

     (
  

  
)      

or, equivalently,  

                                 

or         because    must be an integer . It is quite likely that, 

in the preceding example, it had not been anticipated that as many 

as 865 students would be needed in this study. 

 If that is the case, the statistician must discuss with those involved 

in the experiment whether or not the accuracy and the confidence 

level could be relaxed some. For example, rather than requiring 

      to be a     confidence interval for  , possibly       

would be a satisfactory     one. If this modification is 

acceptable, we now have  
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or, equivalently,  

                                

Since   must be an integer, we would probably use    in practice. 

Most likely, the persons involved in the project would find that a 

more reasonable sample size.  

Of course, any sample size greater than    could be used. Then 

either the length of the confidence interval could be decreased 

from       or the confidence coefficient could be increased from 

     or a  combination of both approaches could be taken. Also, 

since there might be some question as to whether the standard 

deviation σ actually equals   , the sample standard deviation   

would no doubt be used in the construction of the interval. For 

instance, suppose that the sample characteristics observed are  

         ̅                  

Then 

 ̅  
      

  
                       

provides an approximate     confidence interval for    

In general, if we want the           confidence interval for  , 

 ̅    

 
 

 

  
    to be no longer than that given by  ̅     , then the 

sample size n is the solution of  

    
 
 

 

  
   

That  
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where it is assumed that  
  is known. We sometimes call               

              the maximum error of the estimate. If the 

experimenter has no idea about the value of  
 , it 

may be necessary to first take a preliminary sample to estimate   . 

The type of statistic we see most often in newspapers and 

magazines is an estimate of a proportion  .  

We might, for example, want to know the percentage of 

the labor force that is unemployed or the percentage of voters 

favoring a certain candidate. Sometimes extremely important 

decisions are made on the basis of these  estimates. 

 If this is the case, we would most certainly desire short confidence 

intervals for p with large confidence coefficients. We recognize 

that these conditions will require a large sample size. If, to the 

contrary, the fraction p being estimated is not too important, an 

estimate associated with a longer confidence interval with a 

smaller confidence coefficient is satisfactory, and in that case a 

smaller sample size can be used. 

Example : Suppose we know that the unemployment rate has been 

about            However, we wish to update our estimate in 

order to make an important decision about the national economic 

policy. 

 Accordingly, let us say we wish to be     confident that the new 

estimate of   is within       of the true  . If we assume Bernoulli 

trials (an assumption that might be questioned), the relative 
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frequency    , based upon a large sample size  , provides the 

approximate     confidence interval: 

 

 
      √

(
 
 
)    

 
 
 

 
  

Although we do not know     exactly before sampling, since     

will be near     , we do know that 

 

 
      √

(
 
 
)    

 
 
 

 
      √

            

 
  

or, equivalently, 

                                           

That is, under our assumptions, such a sample size is needed in 

order to achieve the reliability and the accuracy desired. Because n 

is so large, we would probably be willing to increase the error, say, 

to     , and perhaps reduce the confidence level to    . In that 

case,  

    (
     

    
)                                 

which is a more reasonable sample size. From the preceding 

example, we hope that the student will recognize how important it 

is to know the sample size (or the length of the confidence interval 

and the confidence coefficient) before he or she can place much 

weight on a statement such as “Fifty-one percent of the voters 

seem to favor candidate A,     favor candidate B, and    are 

undecided.” Is this statement based on a sample of 100 or 2000 or 

10,000 voters? If we assume Bernoulli trials, the approximate     
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confidence intervals for the fraction of voters favoring candidate A 

in these cases are, respectively, [0.41, 0.61], [0.49, 0.53], and           

[0.50, 0.52]. 

 Quite obviously, the first interval, with n = 100, does not assure 

candidate A of the support of at least half the voters, whereas the 

interval with n = 10,000 is more convincing. 

 In general, to find the required sample size to estimate p, recall 

that the point estimate of p is  ̂        and an approximate 

      confidence interval for p is  

 ̂      √
 ̂    ̂ 

 
  

Suppose we want an estimate of   that is within   of the unknown 

  with           confidence, where        √
 ̂    ̂ 

 
  is the 

maximum error of the point estimate  ̂          

Since  ̂ is unknown before the experiment is run, we cannot use 

the value  of  ̂ in our determination of n. However, if it is known 

that p is about equal to    , the necessary sample size n is the 

solution of 

   
  

 
√        

  
  

That is , 
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Often, however, we do not have a strong prior idea about p, as we 

did in Example 2 about the rate of unemployment. It is interesting 

to observe that no matter what value p takes between 0 and 1, it is 

always true that      –          . Hence, 

  

  
 

         

  
 

    
 

   
  

Thus, if we want them             confidence interval for   to 

be no longer than        , a solution for   that provides this 

protection is 

  
    

 

   
 

Remark: Up to this point in the text, we have used the “hat”    ̂   

notation to indicate an estimator, as in    ̂       and   ̂   ̅ 

Note, however, that in the previous discussion we used   ̂       , 

an estimate of p. Occasionally, statisticians find it convenient to 

use the “hat” notation for an estimate as well as an estimator. It is 

usually clear from the context which is being used. 

Example: A possible gubernatorial candidate wants to assess initial 

support among the voters before making an announcement about 

her candidacy. If the fraction p of voters who are favorable, 

without any advance publicity, is around     , the candidate will 

enter the race. From a poll of n voters selected at random, the 

candidate would like the estimate     to be within 0.03 of p. That 

is, the decision will be based on a     confidence interval of the 

form         . Since the candidate has no idea about the 

magnitude of p, a consulting statistician formulates the equation 
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Thus, the sample size should be around      to achieve the 

desired reliability and accuracy. Suppose that      voters around 

the state were selected at random and interviewed and         

express support for the candidate. 

 Then   ̂  
   

    
      is a point estimate of  , and an 

approximate     confidence interval for   is 

          √                                

That is, we are     confident that   belongs to the interval 

               On the basis of this sample, the candidate decided 

to run for office. Note that, for a confidence coefficient of 95%, we 

found a sample size so that the maximum error of the estimate 

would be     . From the data that were collected, the maximum 

error of the estimate is only      . We ended up with a smaller 

error because we found the sample size assuming that         , 

while, in fact,   is closer to 0.20. 

Suppose that you want to estimate the proportion p of a student 

body that favors a new policy. How large should the sample be? If 

p is close to     and you want to be     confident that the 

maximum error of the estimate is         , then  

  
       

        
         

Such a sample size makes sense at a large university. However, if 

you are a student at a small college, the entire enrollment could be 

less than 2401. 
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 Thus, we now give a procedure that can be used to determine the 

sample size when the population is not so large relative to the 

desired sample size. Let   equal the size of a population, and 

assume that     individuals in the population have a certain 

characteristic C. 

 Let         , the proportion with this characteristic. Then 

            . If we take a sample of size n without 

replacement, then X, the number of observations with the 

characteristic C, has a hyper geometric distribution.  The mean and 

variance of X are, respectively 

     (
  

 
)          

and  

 
     (

  

 
) (  –

  

 
)(

   

   
)              (

   

   
)   

The mean and variance of X/n are, respectively,  

 (
 

 
)  

 

 
   

and  

   (
 

 
)  

  

  
 

      

 
(
   

   
)   

To find an approximate confidence interval for p, we can use the 

normal approximation : 
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[
 
 
 

   
 

 

 
 

  

√      
 

(
   
   

)

   
 

]
 
 
 

       

Thus, 

     [
 

 
   

 

√
      

 
(
   

   
)   

 
 

 
   

 

√
      

 
(
   

   
)]   

Replacing   under the radical with   ̂       , we find that an 

approximate   –    confidence interval for   is 

  ̂    
 

√
  ̂     ̂ 

 
(
   

   
)   

 This is similar to the confidence interval for   when the 

distribution of X is         If   is large relative to  , then 

   

   
 

     

     
    

so in this case the two intervals are essentially equal.  

Suppose now that we are interested in determining the sample size 

n that is required to have 1 - α confidence that the maximum error 

of the estimate of p is ε. We let 

    
 
√

      

 
(
   

   
)  
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and solve for n. After some simplification, we obtain 

  

   
 

       

          
 

       
 

 

  
 

          

     
 

 

  
 

       

 

 

If we let  

  
    

         

   
 

which is the n value given by Equation 2, then we choose 

  
 

  
   

 

 

for our sample size   . 

If we know nothing about p, we set          to determine m. For 

example, if the size of the student body is          and             

                      , and we let         , then    

      and    
    

           
       rounded up to the nearest 

integer. Thus, we would sample approximately       of the 

student body 

Example: Suppose that a college of          students is 

interested in assessing student support for a new form for teacher 

evaluation.  
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 To estimate the proportion p in favor of the new form, how large a 

sample is required so that the maximum error of the estimate of p 

is            with 95% confidence? If we assume that p is 

completely unknown, we use          to obtain 

  
       

        
        

rounded up to the nearest integer. Thus, the desired sample size is 

  
    

           
      

rounded up to the nearest integer. 
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Estimation of Proportion 

1- Point Estimation of Proportion :- It makes sense to estimate the percentage of a phenomenon 

in a society by the percentage of the presence of that phenomenon in a random sample taken 

from that community. This supported the percentage estimate by placement as we studied it. 

For example, if you want to estimate the percentage of families who own a car, you can choose 

a random sample and calculate the percentage of the number of families that own a car and use 

the percentage in the sample as an estimate of the percentage in the community This 

introduction clearly shows us that if the pass rate for a binomial experiment is (p), it is possible 

to estimate (p) as follows: Take a random sample of size  and assume that the number of 

successes in this sample (X) can be used    
 

             
 

As an estimate of the success rate (p) and the point estimate of the parameter (p) is the success 

rate in the sample   
 

             
 

Note that this phrase rewards our saying: Take a random sample from the Bernoulli community 

Note that this phrase rewards our saying: Take a random sample from the Bernoulli community 

b(1,p) Let it be the sample   x1 , x2 , … , xn. Then ( ) is the number of successes in the sample 

and is  

  
 

             
  

   

 
 

Note that (X) is the statistic: the number of successes in the sample, but (x) is the value of (X) 

and we get it from the study of the sample, meaning that (x) is the value of (X) that we get from 

a specific sample. Examples of a binomial experiment are many, and examples of the need to 

estimate the success rate (p) are many as well. For example, you need to estimate the proportion 

of students who use eyeglasses in the tenth grade in a country. You need to estimate the 

percentage of students in the sixth grade who write in the left hand. 

2- Interval Estimation of Proportion:- The estimate of the percentage in a period is to find a 

point estimate of the success rate in the community (p) and then find a distribution of that 

estimate and use this information to find a period with a certain confidence factor that limits the 

success rate (p) within it. If the unknown success rate (p) is not expected to be very close to 

zero or one and the sample size(n) is large, then you can use the theory that the distribution  

  
   

√      
 

 

Approach the standard normal distribution if (n)is large. If these conditions are met, you can set 

the possibility phrase   (              )     . Where   

  
   

√      
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Almost subject to standard normal distribution     
      

 
 

The number of successes in the sample size(n) . It is difficult to use the previous probability 

statement as given to find a confidence interval for the ratio (p), because (p) is in the first place. 

                   √
      

 
 

Not known , so we use 

                  
 

             
 

Instead of (p) in  the denominator we get the confidence interval                                                 

100(    ) % 

The approximate percentage (p): 

       
√
      

 
           

√
      

 
 

Ratio confidence interval (p) . 

Theorem (4): 

If it was       
 

             
    The success rate in a random sample of size (n) and (n) was large, the 

confidence period    100(    ) %. The approximate pass rate (p), (p) is a binomial parameter, 

the pass rate in society is:  

       
√
      

 
           

√
      

 
 

Where    

 
. It is the point on the normative natural axis to its left of space (

 

 
). 

Example: Let us retum to the example of histogram of the candy bar weights examples with 

n=40, y=8 if [ 1   0.90] so that [ Z
 

 
 =1.645 ] then using confidence intervals for proportions  

Solution:-  

 ̂  
 

 
   ̂  

 

  
   ̂       

   ̂              
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 ̂    
 

√
 ̂    ̂ 

 
     ̂    

 

√
 ̂    ̂ 

 
 

                   

 [                                       ] 

 [               ] 

If   n=400   ,    y=80    ,   90%  

 ̂  
  

     
  ̂          ̂       

            √
            

   
 

            

[                         ] 

Example: If the probability of success of a student studying a mathematics course is 0.9, a 

sample of 49 students will be taken from those who study this course find           

Solution:- 

           

               

           

         
      

 
 

          

  
        

           *
     

√      
 

       

√      
+ 

 [       ]     [       ] 
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Confidence Intervals for the difference between two means and the difference between two 

Proportion 

We can use the previous method in building confidence intervals for the mean and for us to find 

confidence intervals for the difference between two media (       ) The difference between 

two ratios and that, using the theories of sampling distributions, is the difference between two 

means and the difference between two ratios . 

Theorem: 

Let   x1 , x2 , ….. ,    
    random sample from normal distribution         

   and                 
   

random sample from normal distribution          
    Independent of the first distribution and 

were     
     

   Two facts, the confidence period 100         . The difference between the 

two media (       ) is : 

*          
  
  
√  

        
                  

  
   
√  

        
      + 

Theorem: 

Let   x1 , x2 , ….. ,    
    random sample from Bernoulli society b(1, p1 ) and                  a  

random sample from an independent community b(1, p2 ). The confidence period 100    

     The difference between the two ratios ( p1 – p2 ) she is :  

 ((  
 
    

 
 )   

  
  
√
 
 
(   

 
 )

  
 

 
 
(   

 
 )

  
       

 ( 
 
    

 
  )    

  
  
√
 
 
(   

 
 )

  
 

 
 
(   

 
 )

  
)      

(  1 −  2 )   

     
  √

 1    1  

  
 

 2    2  

  
 

Provided that   , and    are large, where  1 ,and   2 the success rates in the two samples , 

respectively  

Example: If x ~N (   , 4 ) , n=10 observations of X. 

55.95            56.54        57.58          55.13          57.48        56.06 

59.93            58.30        52.57          58.46 

(a) Given a point estimate for   

(b) Find a 95% confidence for   
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(c) less  than 52 grams of candy ? 

Solution: 

(a)   
   

 
 =

                               

  
      

(b)     

 
(√

  

 
)  

                         
     

 
                              

           √
 

  
  

[                          ] 

[                   ] 

(c)  [    ]   *
   

 
 

       

 
+  then p[      ]         

Example: Let     n1=194  ,   n2=162   ,   y1=28    ,    y2=11 

(a) Given a point estimate of p1, and p2. 

(b) Find 95% for p1 

(c) Given a point estimate  p1−p2 

(d) Find a 95% for p1−p2 

Solution:  

(a)  1  
  

  
    

  

   
       

P2 
  

  
    

  

   
           

(b)                             

 
 

     

 
      

Z(0.025)=1.96   then  1    

 
√
 1    1  

  
 

 .1   1.  (√
              

   
) 

[                    ] 

(c)       
  

  
 

  

  
 

  

   
 

  

   
   then             
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(d)           

 
               then   1   2    

 
(√

 1    1 

  
 

 2    2 

  
) 

                   (√
            

   
 

                

   
) 

                  then [                      ] 
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A Statistical Test  of  Hypothesis 
 
A Statistical of hypothesis consists of  five parts: 

1. The null hypothesis denoted by   . 
2. The alternative hypothesis denoted by   . 
3. The test statistic and its    value. 
4. The rejection  region. 
5. The conclusion. 

 
Definition:  
(1) The Two competing hypothesis are the alternative hypothesis 
   generally the hypothesis that the researcher wishes to 
support and the null hypothesis    a contradiction of the 
alternative hypothesis. 

 
(2) Test statistic :a single number calculated  from the sample data . 
 
(3)   value :a probability calculated using the test statistic . 
 
 
Example :. a random sample of 100 California carpenters , you wish  
to show that the average hourly witness  of carpenters in the state of 
California  is different from 14$,which is the national average . 
Solution :. 
(1) This is alternative hypothesis      :     

The null hypothesis                        :     
 

(2) Test statistic let  ̅     lies  

S.E 
 

√ 
 
 

√   
   

 ̅  
 
√ 
⁄
 
     
 
  ⁄
   

(3)   value   (   )   (   )    
                        Small   value        Large   value 
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Definition:  

A Type I error for a statistical test is the error of rejecting the null 
hypothesis when  it is true .The level of significance (significance level) 
 for a statistical test of hypothesis is  
  p(Type I error) p(falsely rejecting   ) p(rejecting    when it is 
true) 
 

             

f(z) 

 

  
 

 
                                                             

 

 
                                                            

 

 

                                                                                    

                                                                                                                

 
 

Large sample statistical Test For   
(1)Null hypothesis         
(2)Alternative hypothesis         (Two Tailed test) 
                   (one Tailed test) 
 

(3)Test statistic : Z 
 ̅   
 
√ 
⁄

 estimated as Z 
 ̅   
 
√ 
⁄

 

(4)Rejection region :Reject     when(one Tail test)               
when alternative  hypothesis            
(Two Tailed  test)    
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Calculating the   value 
Definition: The   value or observed  significance level of a statistical  test 
is the smallest value of    for which    can be rejected . It is the actual risk 
of committing a Type I error ,if    is rejected based on the observed value 
of the test statistic .The   value measures the strength of the evidence 
against    . 
 
Definition: If the   value is less than or equal to   preassigned significance  
level   , then the null hypothesis can be rejected , and you can report the 
results are statistically significant at level   . 
(1)If    value is less than 0.01,   is rejected or between 0.01 and 0.001 ,   
is rejected . The result are highly significant  
(2) If   value between 0.01 and 0.05 ,   is rejected .The result are 
statistically significant  
(3)If    value is greater than 0.001,the result  are very highly significant  
(4)If the   value is between 0.05 and 0.10,    is usually not rejected .The 
result are only tending toward statistical significance. 
(5)If the   value  greater than 0.10 ,    is not rejected the result are not 
statistically significant. 
 

                                                                

 

 

                    0.10                 0.05           0.01   0.001       

                                                                     

 

 

                                                                                                                                  

                                                                                                                         

                                                                                                                                                                                

Between 

Very highly 

significant 
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 f(z) 

 0.05 

 

  0.212  

 0.01 
                                                   Z 
 
                0                                   1.645     2.03     2.33 
 

Standard normal test Z 
Two Type of Errors 
Definition: : 
(1)A Type I error for a statistical test is the error of rejecting    when it is 
true. The probability of making a type I error is denoted by the symbol   . 
(2)A Type II error for a statistical test is the error of accepting    when it 
is false and some    is true . The probability of making a Type II error is 
denoted by the symbol  . 
(3)The power of a statistical test , given as     p(reject 
                   ) measures the ability of the test to perform as 
required . 

Large  Sample Statistical  Test For(     ) 
(1)Null hypothesis :           , where    is some specified difference    
that you wish to test it .For many test      there is no difference 
between            
(2)Alternative hypothesis: 
(one Tailed Test)                           
(Two Tailed Test)             
 (3)Test statistic: 

Z 
(  ̅̅̅̅    ̅̅̅̅ )   

   
 
(  ̅̅̅̅    ̅̅̅̅ )   
  

√  
 
  

√  

 

(4)Rejection region : Reject     when 
(one Tailed Test)  
                      (        )                   
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(Two Tailed Test) 
    

 
         

 
 

Large Sample  Test of Hypothesis for A Binomial Proportion  
(1)Null hypothesis:         
(2)Alternative hypothesis: 
(One Tailed Test): 
                   
(               )  
        
(3)Test statistic :  

  
 ̅   

   
 

 ̅   

√
  (    )

 

       ̅  
 

 
  

Where x is the number of successes in n binomial trials . 
(4)Rejection region : Reject    when  
(One Tailed Test) 
                                             
(               )  
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)         

 
 
 
 
  
 
 

                                              
 

Large Sample Statistical Test For (     ) 
(1)Null hypothesis :                        
(2)Alternative hypothesis:  
(One Tailed Test): 
                           
(Two Tailed Test): 
           
(3)Test Statistic: 

  
(  ̅̅̅    ̅̅ ̅)   

   
 

(  ̅̅̅    ̅̅ ̅)   

√
  (    )
  

 
  (    )
  

 

 

where   ̅̅̅  
  

  
        ̅̅ ̅  

  

  
                used the s.e  is unknown, it 

is estimated by  ̂  
     

     
 then the test statistic  

  
(   ̂     ̂)   

√ ̂(   ̂)
  

 
 ̂(   ̂)
  

 
(   ̂     ̂)

√ ̂(   ̂)(
 
  
 
 
  
)

 

(4)Rejection Region : Reject    when  
(One Tailed Test): 
                                                   
(Tow Tailed Test ): 
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Small Sample Hypothesis  Test For   
(1) Null hypothesis:         
(2) Alternative hypothesis: 
(One Tailed Test): 
                         
(Two Tailed Test): 
        

    (3)Test  Statistic : 

  
 ̅    
 
√ 
⁄

 

(4)Rejection Region: Reject ,    when  
(One Tailed Test): 
                                                         
(Two Tailed Test): 
    

 
               

 
 

  
  

 
 

 
 

 
                               

 

 
    

 
                  
    

 
         0            

 
 

 
 

 
 
  

 
 

0                 
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Test of Hypothesis Concerning The difference  between Two means  : 
Independent Random Samples. 
(1)Null hypothesis :           , where    is some specified difference    
that you wish to test it . For many test      there is no difference 
between            
(2)Alternative hypothesis: 
(one Tailed Test)                           
(Two Tailed Test)             
(3)Test Statistic : 

  
(  ̅̅̅̅    ̅̅̅̅ )   

√  (
 

  
 
 

  
)
  

where    
(    ) 

 
  (    ) 

 
 

       
  

(4)Rejection region : Reject     when  
(one Tailed Test): 
                            (     )                            
(Two Tailed Test): 

    
 
               

 
  

Test of hypothesis Concerning a population Variance 
(1)Null hypothesis : 
     

      
(2)Alternative  hypothesis : 
(One Tailed Test): 
    

                    
            

(Two Tailed Test): 
             
 (3)Test statistic : 

   
(   )  

         
 

 (4)Rejection  Region :Reject    when  
(One Tailed Test): 
                

    (   )            
             

(Two Tailed Test): 
      

 
                   (   

 
)   
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α                                                  
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                                                                                     0.100                                                             f(t) 

0.050                                                                                                 

.                                                                                                                                    

                                                                      0.025                                                                               

0.010                                                                 

 

0.005                                              

 

                       t 

1.383      1.833     2.27         2.821   3.250                                                     

 
                                 Reject     

 
                

 
 

 
 

 (  )                                                                                                            
 
    0.025 
 
                                                                                                                          

 
                                  16.9190      19.0228 
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Test of hypothesis Concerning  the  equality of two  population 
variances 
 (1)Null hypothesis : 
     

 
   

 
  

(2)Alternative  hypothesis : 
(One Tailed Test):      (Two Tailed Test): 
 
       

 
   

 
               

 
   

 
               

 
  

(3) Test  Statistic : 
(One Tailed Test):    (Two Tailed Test): 

   
   

   
                                                           

 
 
   

   
  

where     is the larger sample variance . 
(4) Rejection Region :Reject     when  
(One Tailed Test): 
                                  
(Two Tailed Test): 
    

 
         

 
 
 

                                
 

 
    

 
                
 0                               

 
 

 
 
 
 
                                     
 
                
 0                                
 

 



  

  

     
  

     
  

 
  

  

Republic of Iraq Ministry of Higher 

Education & Research 

 University of Anbar  

College of Education for Pure Sciences  

Department of Mathematics 

     
  

  

    

  

    

  
     

  

  
  

      

  

  

  

  

  

  

  

 2محاضرات الاحصاء 

تاذ المساعد الدكتور مدرس المادة : الاس

 فراس شاكر محمود

  



Mathematical Statistics 2 
 

 
2 

 

                                      

Example: The mean arithmetic for metal wires is 1800 km, and its 

standard deviation is 150 in a sample test of 40 wires, showing that the 

mean is 1840 km. What is the imposition in the  significant  level? 

Solution: 

1- Formulating the hypothesis on the two parties because it was not 

specified 

            

                            

2- The level of significance 

𝛼       

3- Test function, including α known 

  
 
  

  
   

 

√ 

        
         

   

√  

           

4- We calculate the statistical scale of the test since is the data on Z  

   

 
   [      

 

       

 

 ] =  [-1.96 ,1.96] 

5- Decision making 

                   

Accept    

                                   

Example : The director of a statistical studies company relies that the 

average monthly expenditure on food in specific homes equals 290 Iraqi 

dinars, so if he takes a random sample 10 from the houses we show that its 

mean        , standard deviation S = 5, then can this sample be used to 

confirm what the hypothesis of using confidence level 95%. 
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Solution : 

Since σ is then unknown on the sample size n <30 permission on the t-

distribution       =296                       

                  𝛼       

1- Formulation of hypotheses 

         

         

2- We find the level of significance α 

  𝛼         𝛼          𝛼        

2- We find the test function S 

  
   

 

√ 

    
        

 

√  

    

      

4- We find the statistical scale for selection 

Since σ is unknown n = 10≤30  

   
 
      

 

[(
  (    )

 
   )  (

 (    )

 
  )] 

    (       )  (       )  

Find a table for t 9 with 0.025 and be 2.262  

[-2.262 ,2.262] 

5- Decision-making 

     -2.262 ,2.262] Accept the alternative hypothesis    

                                  (     ) 
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Example : I took a random sample size of 100 from the marks of 

successful female students in the general secondary exam, and I gave an 

arithmetic mean          and the sample variance   
      and took a 

sample size of 150 from the male students who passed the high school 

exams and was given an arithmetic mean         and variance 

  
      .Test at the sample level α = 0.05. 

Solution: 

                   
         

      

1-Formulate the hypothesis on the two parties because it was not 

specified 

                     

           

2- level of significant  

𝛼       

3-Test function 

  
      (     )

√
  

 

  
 

  
 

  

      

  
         

√   
    

   
   

            

4- statistical scale test function 

Since it is two parties 

  
 

      
 

  (     ) 

  (     )                      

5- Decision making 
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    Since the values of Z belong to the statistical scale, then the null 

hypothesis is accepted      

 We apply the law but formulate hypotheses         

either in the case given 

  
           

√   
    

   
   

            

                               

Small sample Hypothesis test for (      )Independent random 

sample 

Example : If the weights of the male individuals follow a normal 

distribution, i.e. the same variance, where a sample of 10 people was 

chosen, their average weights were 70.19 kg and a variation of 8.7 kg, 

another random sample was tested 15, and their average weights were 

68,58 kg, a variation of 12.56 kg. Find a heavier weight using individuals 

significant  level α = 0.05. 

Solution: 

                                                         
            

 

               

Since it is heavier than the one on the right side and the distribution t 

because σ is unknown and the sample flesh is less than 30 

1- Formulate the hypothesis 

                   

          

2- The level of significance  

       

3- Test function 
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√
 (    )  

 

     
(    )  

 

    (
 
  

 
 
  

)

      

  
           

√(    )(    )  (    )(     )
       

(
 
  

 
 
  

)

      

4- The scale of the statistical function 

Since it is one party 

T=1.164  

 (𝛼        ) 

t(0.05,10+15-2)= t(0.05, 23)=[-1.714, +1.714]  

5- Decision making 

                                                         

                                                            

Example : It is known that the percentage of seat belt users in cars before enacting 

the law of obligatory use is 0.80. A random sample of  200 drivers was studied 

after the enactment of the obligatory law. There were 170 of them using the belt. It 

was tested at the level of significance of 5% if the legislation increased the 

proportion of users of the seat belt? 

Solution: 

                                                

  ̅  
         

     
 

   

   
   ̅       

Since the amount has increased (unilateral) 

1- Formulate the hypothesis 
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2- The level of significance 

          

3- Test function 

  
  ̅    

√  (    )
 

 
         

√    (      )
   

  

  
    

√    
   

  
    

          
 

Z= 1.7677669559                                                   

4- The scale of the statistical function 

Since the function is one-sided right 

                 

Then the confidence interval                

5 - Decision making 

                              

                                                       .  

                                                            

Example : If the ratio of the units used for a factory is equal to 30%, a 

sample of 1000 units was tested, and 350 of them were damaged. Do these 

results indicate that the percentage of damaged units exceeds 30% of the 

production of this factory? Use a significant level 𝛼= 0.01. 

Solution : 

                                               

 

  ̅  
         

     
 

   

    
   ̅       

Since the amount has increased (one-sided) right 

1 - Formulate the hypothesis 
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2-The level of significance 

            

3- Test function  

  
  ̅    

√  (    )
 

 
        

√   (     )
    

  

  
    

√
    

    

  
    

            
=3.4503278077                                                       

4-The scale of the statistical function 

Since the function is one-sided right 

                

5- Decision making 

               (     ) 

                                                       .  

                                                            

Example : If the percentage of blood disease in the city of Abba in 2008 is 

28.8%, and in 2016 a sample of the population in this city tested a size of 

1238 people, including 320 people who had blood pressure, then do these 

results indicate a decrease in the disease rate between 2008 and 2016? 

Morale level   = 0.05. 

Solution  

                                                  

  ̅  
         

     
 

   

    
   ̅        

Since the magnitude has decreased (one-sided) left 
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1- Formulate the hypothesis 

                   

                             

2-The level of significance  : 

           

3- Test function 

  
  ̅    

√  (    )
 

 
           

√     (       )
    

  

  
      

√        
    

  
      

            
 

Z=-3.0303222435                                                      

4- The scale of the statistical function 

Since the function is one-sided right 

                    

5- Decision making 

               (       ) 

                                                       .  

*   You should be        

                                  (     ) 

Example: comparison of the percentage of smokers in the age group (18 – 

25) with the category (26 – 30) years . Taking a random sample of  200 

from the first category, 80 of them smoke and took a random sample 

independent of the first of the second age group of 100, so 52 of them 

smoke. Test the hypothesis          versus          at the function 

level α = 0.05. 

Solution: 
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                                𝛼       

 
 

 
  

  
 

  

   
    

 
      

 
 

 
  

  
 

  

   
    

 
      

1- Formulate the hypothesis 

          

          

2 - The level of significance 

       

3-Test function 

  
     

√ 
 
(   

 
)(

 
  

 
 
  

)

      

  
        

√   (     ) 
 

   
 

 
   

 

      

     

4 - The scale of the statistical function 

                    

5-Decision making    

                       

                                                       .  

                                                    

Example: I took a random sample of 9 from a normal population, which 

varied 33 and gave it an arithmetic mean      And contrast       . 

Test the connotations of significance𝛼       
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Hypothesis     
     Opposite      

       ? 

Solution: 

                                        

1- Formulate the hypothesis 

    
       ,      

    
     

2- The level of significance 

       

3- Test function 

   
(   )  

  
         

4- The scale of the statistical function 

  (       )  (          ) 

  (      )        

We meet 8 and 0.95 in a table chi-sq 

5- Decision making 

               

                                                       .  

                                                                        

Example: two independent samples were taken from normal societies and 

given  

                                       
          

     

Test hypothesis level 0.05  .     
    

  Opposite      
    

  

Solution: 

1- Formulate the hypothesis 
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2- The level of significance 

       

3- Test function 

  
  

 

  
 
         

  

  
             

4- The scale of the statistical function 

Since it is one-sided ((right)) 

(             ) 

(               )  (         )       

5- Decision making  

            

                             . 
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Critical Region   

We begin this chapter on tests of statistical hypotheses with an application in which 

we define many of the terms associated with testing . 

Example :-  Let X equal the breaking strength of a steel bar . If the bar is 

manufactured by process I , X is N(50,36) i.e., X is normally distributed with 

𝜇              . It is hoped that if process II (a new process ) is used , X will 

be N(50,36) . Given a large number of steel bars manufactured by process II , how 

could we test whether the five-unit increase in the mean breaking strength was 

realized ?  

In this problem , we are assuming that X is  (     )       is equal to 50 or 55 .We 

want to test the simple null hypothesis         against the simple alternative 

hypothesis        . Note that each of these hypotheses completely specifies the 

distribution of X. That is ,    states that X is N(50,36) and    states that X is 

N(55,36) . (If the alternative hypothesis had been         , it would be a 

composite hypothesis , because it is composed of all normal distributions with =36 

and means greater than 50 ) In order to test which of the two hypotheses ,    or    , 

is true , we shall set up a rule based on the breaking strengths            of n bars 

(the observed values of a random sample of size n from this new normal 

distribution) . The rule leads to a decision to accept or reject   ; hence , it is 

necessary to partition the sample space into two parts-say , C and    - so that if 

(          )   ,    is rejected , and if (          )    ,    is accepted (not 

reject) . The rejection region C for    is called the critical region for the test . Often 

, the partitioning of the sample space is specified in terms of the values of a statistic 

called the test statistic . In this example , we could let  
 
 

  be the test statistic and say 

,take   *(          )   ̅     +   that is we will reject    if  ̅    . If 

(          )    when    is true ,    would be rejected when it is true , a Type I 

error . If (          )     when    is true ,    would be accepted (i.e. not 

rejected) when in fact    is true , a Type II error . The probability of a Type I error 

is called the significance level of the test and is denoted by 𝛼 .  

That is , 𝛼   ,(          )       - is the probability that (          ) falls 

into C when    is true . The probability of a Type II error is denoted by 𝛽 ; that is , 

𝛽   ,(          )        - is the probability of accepting (failing to reject)    

when it is false.  
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As an illustration , suppose n=16 bars were tested and   * ̅  ̅    + . Then  ̅ is 

N(50,36/16) when    is true and is N(55,36/16) when    is true . Thus ,  

𝛼   ( ̅       )   (
 ̅    

 
 

 
     

 
 

    ) 

    ( )         

And  

β   ( ̅       )   (
 ̅    

 
 

 
     

 
 

    ) 

  . 
 

 
/                  . 

Note that by changing the critical region , C , it is possible to decrease (increase) the 

size of 𝛼 but this leads to an increase (decrease) in the size of 𝛽 . Both α       can 

be decreased if the sample size n is increased. 

Example :- Assume that the underlying distribution is normal with unknown mean 

𝜇 but known variance       . Say we are testing the simple null hypotheses 

   𝜇     against the composite alternative hypotheses     𝜇     with a sample 

mean  ̅ based on n=52 observations . Suppose that we obtain the observed sample 

mean of  ̅        . If we compute the probability of obtaining an  ̅ of that value 

of       or greater when 𝜇     . then we obtain the P-value associated with 

 ̅        .  

         ( ̅         𝜇    ) 

  (
 ̅    

  

√  

 
        

  

√  

   𝜇    ) 

    (
        

  

√  

)     (     )          
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If this p-value is small , we tend to reject the hypotheses    𝜇    . For example 

rejecting    𝜇     if the p-value is less than or equal to 𝛼       is exactly the 

same as rejecting    if  

 ̅     (     ) .
  

√  
/         . 

Here                 α                       ̅               

To help the reader keep the definition of p-value in mind , we note that it can be 

thought of as that tail-end probability , under    , of the distribution of the statistic 

(      ̅) beyond the observed value of the statistic .  

            If the alternative were the two-sided    𝜇     , then the p-value would 

have been double 0.0237 ; that is , then the p-value =2(0.0237)=0.0474  because we 

include both tails . 

To test    𝜇  𝜇  against one of these three alternative hypotheses , a random 

sample is take from the distribution and an observed sample mean ,  ̅ , that is close 

to 𝜇  supports   . The closeness of  ̅    𝜇  is measured in terms of standard 

deviations of   ̅ 𝛼 √  , when 𝛼 is known , a measure that is sometimes called the 

standard error of the mean . Thus the test statistic could be defined by  

                      

         ̅  𝜇      √  μ  𝜇  μ  𝜇  

          ̅  𝜇      √  μ  𝜇  μ  𝜇  

              ̅  𝜇         √  μ  𝜇  μ  𝜇  

   

  
 ̅  𝜇 

√    
 

 ̅  𝜇 

  √ 
 

And the critical regions , at a significance level 𝛼 , for the three respective 

alternative hypotheses would be ( )       (  )       , and (   )        . 

In terms of  ̅ , these three critical regions become ( ) ̅  𝜇    .
 

√ 
/, (  ) ̅  

𝜇    .
 

√ 
/  and (   )  ̅  𝜇     

 
.

 

√ 
/. The three tests and the distribution is 

 (𝜇    ) and    is known. It is usually the case that the variance    is not known . 

Accordingly , we now take a more realistic position and assume that the variance is 



5 
 

unknown . Suppose our null hypotheses is    𝜇  𝜇  and the two-sided alternative 

hypotheses is    𝜇  𝜇  . For a random sample            taken a normal 

distribution  (𝜇    ) , a confidence interval for 𝜇 is based on  

  
 ̅  𝜇

√    
 

 ̅  𝜇

  √ 
 

This suggests that T might be a good statistic to use for the test of    𝜇  𝜇     

with 𝜇 replaced by 𝜇  . In addition , it is the natural statistic to use if we replace 

     by its unbiased estimator      in ( ̅  𝜇 ) √     . If   𝜇  , we know that 

T has a t distribution with n-1 degrees of freedom . Thus , with 𝜇  𝜇  , 

 [      
 
 (   )

]   [
  ̅  𝜇  

 

√ 

   
 
 (   )

]  𝛼 

Accordingly , if  ̅ and s are , respectively , the sample mean and sample standard 

deviation , then the rule that reject    𝜇  𝜇  and accepts    𝜇  𝜇  if and only if  

    
  ̅  𝜇  

 

√ 

   
 
(   ) 

Provides a test of this hypotheses with significance level 𝛼 . Note that this rule is 

equivalent to rejecting    𝜇  𝜇  if not the open    (  𝛼)  confidence interval  

( ̅    
 
 (   )

[
 

√ 
]   ̅    

 
 (   )

[
 

√ 
]) 

The following Table summarizes tests of hypotheses for a single mean along with 

the three possible alternative hypotheses , when the underlying distribution is 

 (𝜇    ) ,    is unknown ,   
( ̅   )

 

√ 

 . and      . If      , we use the 

following Table for approximate tests , with σ replaced s . 

                      

         ̅  𝜇      √  μ  𝜇  μ  𝜇  

          ̅  𝜇      √  μ  𝜇  μ  𝜇  

              ̅  𝜇         √  μ  𝜇  μ  𝜇  
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Example : Let X (in millimeters) equal the growth in 15 days of a tumor induced in 

a mouse . Assume that the distribution of X is  (𝜇    ) . We shall test the null 

hypotheses     𝜇  𝜇         aganst the two-sided alternative hypothesis 

   𝜇      If we use n=9 observations and a significance level of 𝛼       , the 

critical region is  

    
  ̅      

 

√ 

   
 
( )         

If we are given that       ̅                 we see that  

  
       

   

√ 

 
   

   
       

Thus ,  

                 

And we accept (do not reject )    𝜇      at the 𝛼      significance level. The 

p-value is the two-sided probability of          , namely .  

         (        )    (      ) 

With our t tables with eight degrees of freedom , we cannot find this P-value 

exactly. It is about 0.50 , because  

 (         )    (       )       

Remark : In discussing the test of a statistical hypothesis , the word accept      

might better be replaced by do not reject    . That is , if ,  ̅ is close enough to 4.0 

so that we accept 𝜇      , we do not want that acceptance to imply that 𝜇 is 

actually equal to 4.0  , We want to say that the data do not deviate enough from 

𝜇      for us to reject that hypothesis : that is , we do not reject 𝜇      with these 

observed data . With this understanding , we sometimes use accept . and sometimes 

fail to reject or do not reject  , the null hypothesis . 

Example : In attempting to control the strength of the wastes discharged into a 

nearby river , a paper firm has taken a number of measures. Members of the firm 

believe that they have reduced the oxgen-consuming power of their wastes from a 
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previous mean 𝜇 of 500 ( measured in parts per million of permanganate) . They 

plan to test    𝜇      against    𝜇      , using  readings taken on n=25 

consecutive days. If these 25 values can be treated as a random sample , then the 

critical region , for a significance level of 𝛼         is  

  
 ̅     

 

√  

       (  )         

The observed values of the sample mean and sample standard deviation  .  

 ̅        and          . since  

  
         

      

√  

              

We clearly reject the null hypothesis and accept    𝜇      . Note , however , that 

although an improvement has been made , there stil might exist the question of 

whether the improvement is adequate . The one-sided     confidence interval for 𝜇 

[             (
      

√  
)]  ,          - 

Provides an upper bound for 𝜇 and may help the company answer this question. 
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The Wilcoxon  Tests 

As mentioned earlier in the text, at times it is clear that the normality 

assumptions are not met and that other procedures, sometimes 

referred to as nonparametric or distribution-free methods, should 

be considered. 

Example: Suppose some hypothesis, say,           , against 

          , is made about the unknown median, m, of a 

continuous-type distribution. 

 From the data, we could construct a             confidence 

interval for m, and if    is not in that interval, we would reject    at 

the   significance level. 

 Now let   be a continuous-type random variable and let m denote the 

median of X. To test the hypothesis            against an 

appropriate alternative hypothesis, we could also use a sign test. That 

is, if                    denote the observations of a random sample 

from this distribution, and if we let Y equal the number of negative 

differences among    –       –           –   , then Y has the 

binomial distribution          under     and is the test statistic for 

the sign test. If Y is too large or too small, we reject           . 

Example: Let X denote the length of time in seconds between 

two calls entering a call center.  

Let m be the unique median of this continuous-type 

distribution. We test the null hypothesis             against 

the alternative hypothesis            . If Y is the number of 

lengths of time between calls in a random sample of size 20 
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that are less than 6.2, then the critical region        

    has a significance level of           .  

A random sample of size 20 yielded the following data: 

6.8       5.7        6.9        5.3      4.1      9.8       1.7     7.0 

2.1       19.0       18.9      16.9      10.4      44.1      2.9      2.4 

4.8           18.9            4.8           7.9 

Since      , the null hypothesis is not rejected . 

The sign test can also be used to test the hypothesis that two possibly 

dependent continuous-type random variables X and Y are such that     

                  .  

To test the hypothesis              against an appropriate 

alternative hypothesis, consider the independent pairs 

                           . 

 Let W denote the number of pairs for which    –       .When    

is true, W is         , and the test can be based upon the statistic W.  

For example, say X is the length of the right foot of a person and Y the 

length of the corresponding left foot. Thus, there is a natural pairing, 

and here                  suggests that either foot of a 

particular individual is equally likely to be longer. 

 One major objection to the sign test is that it does not take into 

account the magnitude of the differences                . 

 We now discuss a test of Wilcoxon that does take into account the 

magnitude of the differences     –                  . However, in 

addition to assuming that the random variable X is of the continuous 
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type, we must also assume that the pdf of X is symmetric about the 

median in order to find the distribution of this new statistic.  

Because of the continuity assumption, we assume, in the discussion 

which follows, that no two observations are equal and that no 

observation is equal to the median.  

We are interested in testing the hypothesis           , where m0 is 

some given constant. With our random sample             , we rank 

the absolute values     –         –             –     in ascending 

order according to magnitude.That is, for                we let    

denote the rank of 

         among     –         –             –    . 

 Note that               is a permutation of the first n positive 

integers,          . Now, with each   , we associate the sign of the 

difference        ; that is, if    –       , we use   , but if 

            , we        use –  . The Wilcoxon statistic W is the 

sum of these n signed ranks, and therefore is often called the 

Wilcoxon signed rank statistic. 

Example: Suppose  the lengths of n = 10 sunfish are 

                                                     

We shall test             against the alternative hypothesis 

           . Thus, we have   

   –                                                        

                                                                                                            

                                                                                                                                                               

                                                                                                                                          

Therefore, the Wilcoxon statistic is equal to 
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Incidentally, the positive answer seems reasonable because the 

number of the 10 lengths that are less than 3.7 is 3, which is the 

statistic used in the sign test . 

If the hypothesis            is true, about one half of the 

differences would be negative and thus about one half of the signs 

would be negative. 

 Hence, it seems that the hypothesis            is supported if the 

observed value of W is close to zero. If the alternative hypothesis is 

          , we would reject    if the observed       is too 

large, since, in this case, the larger deviations         would 

usually be associated with observations for which    –      .  

That is, the critical region would be of the form            .  

If the alternative hypothesis is           , the critical region would 

be of the form            . Of course, the critical region would be 

of  the form                     for a two-sided alternative 

hypothesis           .  

In order to find the values of         , and    that yield desired 

significance levels, it is necessary to determine the distribution of W 

under   . 

 Accordingly, we consider certain characteristics of this distribution.  

When            is true, 
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Hence, the probability is 1/2 that a negative sign is associated with the 

rank    of     –    . 

 Moreover, the assignments of these n signs are independent because 

             are mutually independent. In addition, W is a sum that 

contains the integers          , each with a positive or negative sign. 

Since the underlying distribution is symmetric, it seems intuitively 

obvious that W has the same distribution as the random variable 

  ∑   

 

   

  

where              are independent and 

                 
 

 
                

That is, V is a sum that contains the integers 1, 2, . . . , n, and these 

integers receive their algebraic signs by independent assignments. 

Since W and V have the same distribution, their means and variances 

are equal, and we can easily find those of V.  

Now, the mean of    is 

        (
 

 
)   (

 

 
)      

Thus ,  

          ∑      

 

   

    

The variance of    is 
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        (

 

 
)      (

 

 
)       

Hence,  

              ∑        

 

   

 ∑   

 

   

 
            

 
   

We shall not try to find the distribution of W in general, since that 

    does not have a convenient expression. 

 However, we demonstrate how we could find the distribution of W 

(or V) with enough patience and computer support. 

 Recall that the moment-generating function of    is 

            (
 

 
)        (

 

 
)  

        

 
              

Let      ; then the moment-generating function of         is 

      [          ]  

From the independence of    and   , we obtain 

                    

 (
      

 
)(

        

 
) 

 
               

 
   

This means that each of the points           in the support of 

        has probability 1/4. 
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 Next let    ; 

then the moment-generating function of          is  

      [            ] 

  [         ]        

 (
               

 
 ) (

          

 
) 

 
                                

 
   

 

 Thus, the points                 and   in the support of          

             have the respective probabilities                                

                         and    . 

 Obviously, this procedure can be continued for                but it 

is rather tedious. 

 Fortunately, however, even though              are not identically 

distributed random variables, the sum V of them still has an 

approximate normal distribution for large samples. 

 To obtain this normal approximation for V (or W), a more general 

form of the central limit theorem, due to Liapounov, can be used 

which allows us to say that the standardized random variable 

  
   

√              
 

is approximately N(0, 1) when    is true. 
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 We accept this theorem without proof, so that we can use this normal 

distribution to approximate probabilities such as 

                             when the sample size n is 

sufficiently large. 

Example: The moment-generating function of W or of V is given by 

     ∏
        

 
  

 

   

 

Using a computer algebra system such as Maple, we can expand      

and find the coefficients of    , which is equal to         . 

In Figure, we have drawn a probability histogram for the distribution 

of W along with the approximating                             

for          (a poor approximation) and for       . It is important 

to note that the widths of the rectangles in the probability histogram 

are equal to 2, so the “half-unit correction for continuity” mentioned 

in Section 5.7 now is equal to 1. 

Example: Let m be the median of a symmetric distribution of the 

continuous type.  

To test the hypothesis             against the alternative 

hypothesis            , we take a random sample of size       . 

For an approximate significance level of             is rejected if 

the computed W = w is such that 

  
 

√          
 

         

or  
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       √
          

 
          

Say the observed values of a random sample are 176.9, 158.3, 152.1, 

158.8, 172.4, 169.8, 159.7, 162.7, 156.6, 174.5, 184.4, 165.2, 147.8, 

177.8, 160.1, and 160.5.  

In Table 1, the magnitudes of the differences            have been 

ordered and ranked.Those differences          which were negative 

have been underlined, and the ranks are under the ordered values.  

For this set of data, 

                                             

 

Figure 1 

Example: The weights of the contents of        and        tins of 

cinnamon packaged by companies A and B, respectively, selected at 

random, yielded the following observations of X and Y: 
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x:  

y:  

117.1  

123.5  

121.3  

125.3  

127.8  

126.5  

121.9  

127.9  

117.4  

122.1  

124.5  

125.6  

119.5  

129.8  

115.1 

117.2 

 

The critical region for testing             against             

is of the form      . 

 Since            , at an approximate          significance 

level    is rejected if  

   
            

√                  
         

or 

       √
          

  
               

To calculate the value of W, it is sometimes helpful to construct a 

back-to-back stem-and-leaf display. In such a display, the stems are 

put in the center and the leaves go to the left and the right.  

(See Table 1.) Reading from this two-sided stem-and-leaf display, we 

show the combined sample in Table 2, with the Company B (y) 

weights underlined. The ranks are given beneath the values. 

From Table 2, the computed W is  
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Table 1 : Back-to-back  stem-and-leaf diagram of weights of cinnamon 

 

Table 2: Combined ordered samples 

115.1 117.1 117.2 117.4 119.5 121.3 121.9 122.1 

1 2 3 4 5 6 7 8 

123.5 124.5 125.3 125.6 126.5 127.8 127.9 129.8 

9 10 11 12 13 14 15 16 

 

Thus,    is rejected. 

 Finally, making a half-unit correction for continuity, we see that the 

p-value of this test is  

                    

  (
    

√       
 

       

√      
) 

                         



 

 

Methods of Estimation 
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Power of ASTATISTICAL TEST  

We gave several tests of a fairly common statistical hypotheses in such a 

way that described the significance level   and the p-value of each . of 

course those tests were based on good sufficient) statics of the 

parameters, when the latter exist. In this lecture, we consider the 

probability of  Making the other type of error accepting I the null 

hypothesis    when the alternative a hypothesis   is true. This 

consideration leads to ways to find Most Powerful tests of the null 

hypothesis   against the alternation hypothesis    . The first example 

introduces a new concept. using a test about P , the probability of success 

The Sample size is kept Small so that Table II in Appendix B Can be 

used to find probabilities. The application is one that you can actually 

Perform 

Example: 

Assume that when given a name lag, a person puts it on either the right or 

left Side Let f equal the probability that the name tag is placed on the 

right side. we shall test the null hypothesis,   :p=  ⁄  against the 

composite alternative the hypothesis   :p<   ⁄ (Included with the null. 

hypothesis are those values of P which are a greater than   ⁄  ,,that is, we 

could think of    as    :P≥112 we shall give name tags to a random 

sample n=20 people. denoting the placements of their name • tags with 

Bernoulli random variables,              where      if a person 

places the name tag on the right and     " if person places the name 

tag on the left, for our test statistic, we can then use Y= ∑   
  
    which has 

the binomial distribution b (20,P). Say the critical region is defined by C= 

{Y: Y≤6} or equivalently, by {(             :∑       
   } since y is b 

(20,  ⁄ )  if P=  ⁄  the significance level of the corresponding test is 

ϐ=P(Y≤6: P=  ⁄ ) = ∑ (  
 
) (

 

 
)
  

 
   =0.0577 from Table II in Appendix 

B. of course, the probability ß of a Type II error has different value, with 

different values of P select from the Composite alternative hypothesis 

      
 ⁄   for example::, with P=  ⁄ , β=P(7≤Y≤20; P=  ⁄ ) = 



 

 

∑ (  
 
) (

 

  
)
 

(
 

 
)
    

  
   = 0.2142 whereas with P=    ⁄   β=P(7≤Y≤20; 

P=   ⁄ ) =∑ (  
 
) (

 

  
)
 

(
 

  
)
    

  
    

=0.0024 

Instead of considering the probability β of accepting   when  , is true, 

we could compute the probability K of rejecting    when   is true After 

all, β and K=1-β Provide the same information since k is a function of  P, 

we denote this explicitly. by writing K(p). The probability 

K(P) =∑ (  
 
) 

              ,0< P≤
 

 
 

is called the power function of the test of course, ϐ=K(  ⁄ ) = 0.0577, 1-

K(  ⁄ )=0.2142, and 1-k(   ⁄   =0.0024. The value of the power function 

at a specified p. is called the power of the test at that point. For instance, 

K(  ⁄ )=0.7858 and K(   ⁄ ) = 0.9976 are the powers at P=  ⁄  and 

P=   ⁄ , respectively. An accepta able power function assumes Small 

Values when    is true and larger values when P differs much from 

P=  ⁄ . 
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Best Critical Region 
We consider the properties a satisfactory hypothesis test (or critical region) 

should possess. To introduce our investigation, we begin with a non-

statistical example.  

Example: Say that you have α dollars with which to buy books. Further, 

suppose that you are not interested in the books themselves, but only in 

filling as much of your book- shelves as possible. How do you decide which 

books to buy? Does the following approach seem reasonable? First of all, 

take all the available free books. Then start choosing those books for which 

the cost of filling an inch of bookshelf is smallest. That is, choose those 

books for which the ratio c/w is a minimum, where w is the width of the 

book in inches and c is the cost of the book. Continue choosing books this 

way until you have spent the α dollars. 

 

Definition: uniformly most powerful critical region of size   . 

A test defined by a critical  region C of size   is a uniformly most powerful 

test if it is a most powerful test against each simple alternative in    . The 

critical region C is called a uniformly most powerful critical region of size    

LIKELHOOD RATIO TESTS  

We consider a general test – construction method that is applicable when 

either of both of the null and alternative hypotheses – say . H0 and H1-are 

composite . We continue to assume that the functional form of the p. d. f.  is 

Known . but that it depends on one or more unknown parameters . that is we 

assume that the p. d. f. of X is       , where   represent one or more 

inknown parameters . we let Ω denote the total parameters space – that is , 

the set of all possible values of the parameter    given by either H0or H1 . 

these hypotheses will be stated as .  

                       

Where   is a subset of Ω and    is the complement of                     . 

the test will be constructed with the use of a ratio of likelihood functions that 

have been maximized in   and Ω , respectively . n a sense , this is natural 

generalization of the ratio appearing in the Neyman – Pearson lemma when 

the two hypotheses were simple .  

Definition: 

The likelihood ratio is the quotient  

   
   ̂ 

   ̂ 
 

Where   ̂  is the maximum of the likelihood function with respect to   

when      and    ̂  id the maximum of the likelihood function with 

respect to   when     



 

 

Definition: 

Consider the test of the simple null hypothesis          against the 

simple alternative hypothesis          Let C be a critical region of size  : 

that is ,          . Then C is a best critical region of size   if. For every 

other critical region D of size            We have               )  

That is. When         is true . the probability of rejecting            

with the use of the critical region C is at least as great as the corresponding 

probability with the use of any other critical region D of size    . 

Thus a best critical region of size   is the critical region that has great- est 

power among all critical region of size   . the Neyman- Person lemma gives 

sufficient conditions for a best critical region of size   

 

 

Theorem:(Neyman- Person lemma )  

Let             be a random sample of size n from a distribution with pdf 

or pmf         . where    and    are two possible values of   .  

 

                                                 

If there exist a positive constant k and a subset C of the sample space such 

that  

(a)  [                   ]   ∫         
  . 

 

(b) 
     

     
                             

 

(c) 
     

     
                        ̅  

 

Then C is a best critical region of size   for testing the simple null 

hypothesis          against the simple alternative hypothesis          

 

Proof: We prove the theorem when the random variables are the continuous 

type: for discrete – type random variables replace the integral signs by 

summation signs To simplify the exposition . we shall use the following 

notation :  

∫
 
       ∫

 
  ∫                                

Assume that there exists another critical region of size  - say . D, such that. 

in this new notation  



 

   ∫
 
        ∫

 
        

Then we have  

   ∫
 
        ∫

 
       

  ∫
   

       ∫
   

        ∫
   

      ∫
   

       

Hence  

   ∫
   

       ∫
   

       

By hypothesis (b).                                  and therefore in 

   , thus . 

  ∫
   

       ∫
   

       

By hypothesis (b).                                  and therefore in 

    : thus we obtain . 

  ∫
   

       ∫
   

       

Consequently . 

   ∫
   

       ∫
   

            {∫   
       ∫

   
      } 

That is . 

      {∫   
       ∫

   
       ∫

   
       ∫

   
      }  

Or equivalently .  

      {∫ 
       ∫

 
      } 

Thus.  

∫
 
       ∫

 
        

That is .                   since that is true for rvery critical region D of 

size   . C is a best critical region of size  . 

Example: 

Let            denote a random sample of size n from a Poisson 

distribution with mean  . A best critical region for        against 

       given by  

    

    
  

 ∑   
 
       

          
 
          

 ∑   
 
       

     

This inequality can be written as  

(
 

 
)
∑   

 
   

       or  ∑   
 
        (

 

 
)            

Since In (2/5)     The latter inequality is the same as  



 

∑  

 

   

   
      

  (
 
 
)

    

 If n = 4 and c = 13,then  

   (∑  

 

   

         )                 

Since ∑   
 
   has a Poisson distribution with mean 8 when   = 2.  

Because   is the quotient of nonnegative functions,       In addition , 

since        it follows that    ̂     (  ̂)  and hence     1 . thus 0 

     1. If the maximum of L in   is much smaller than in  . It would 

seem that the data            do not support the hypothesis           . that 

is . a small value of the ratio      ̂     (  ̂)  would lead to the rejection 

of    . In contrast, a value of the ratio   that is close to 1 would support the 

null hypothesis    this reasoning leads us to the next definition.  

Definition: To test           against           the critical region for the 

likelihood ratio test is the set of points in the sample space for which. 

  
   ̂ 

 (  ̂)
     Where         and k is selected so that the test has a 

desired significance level  . The next example illustrates these definitions  

Example: 

Assume that weight X in ounces of a " 10- pound " bag of sugar is          . 

We shall test the hypothesis          against the alternative   

hypothesis           Thus,    {             } and   

 {   } . To find the likelihood ratio, we need    ̂       (  ̂) when     is 

true ,   can take on only one value , namely      . Hence    ̂  

        To find  (  ̂) we must find the value of   that maximizes       

Recall that  ̂    ̂  is the maximum likelihood estimate of  . Then  (  ̂)  

    ̂  and the likelihood ratio      ̂   (  ̂) is given by. 

  
(   )

 
 
    * (

 

  
)∑           

   +

(   )
 
 
     * (

 

  
)∑ (    )

  
   +

 = 
   * (

 

  
)∑ (    )

  
    (

 

  
)(     )

 
+

    * (
 

  
)∑ (    )

  
   +

 

     * 
 

  
 (     )

 
+  

On the one hand , a value of   close to 162 would tend to support     and in 

that case   is close to 1 . on the other hand , an   that differs from 162 by too 

much would tend to support     (see Figure 1 for the graph of this likelihood 

ratio when n=5). A critical region for  likelihood ratio is given by     k , 



 

where k is selected so that the significance level of the test is   . Using this 

criterion and simplifying the  

 

 

 

 

 

 

 

Figure 1. The likelihood ratio for testing          

Inequality as we do when we use the Neyman- Pearson lemma , we find that 

    k is equivalent to cach of the following Inequalities:  

 (
 

  
) (     )

 
        

(     )
 
   (

  

 
)       

{     }

√ 

√ 

   
√  (

  
 )     

√ 

√ 

   

Since   (     )  (
√ 

√ 
) is N(0.1) when          is true. Let 

        Thus the critical region is .  

   

{
 
 

 
 

   
|     |

√ 
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}
 
 

 
 

 

To illustrate , if          then               

 

 

 



 

 

 

 

 

 

 



 

 


